CLASSIFICATION OF UAV POINT CLOUDS BY RANDOM FOREST MACHINE LEARNING ALGORITHM

CLASSIFICATION OF UAV POINT CLOUDS BY RANDOM FOREST MACHINE LEARNING ALGORITHM

Today, unmanned aerial vehicle (UAV)-based images have become an important data sources for researchers who deals with mapping from various disciplines on photogrammetry and remote sensing. Reconstruction of an area with threedimensional (3D) point clouds from UAV-based images are an essential process to be used for traditional 2D cadastral maps or to produce a topographic maps. Point clouds should be classified since they subjected to various analyses for extraction for further information from direct point cloud data. Due to the high density of point clouds, data processing and gathering information makes the classification of point clouds a challenging task and may take a long time. Therefore, the classification processing allows an optimal solution to acquire valuable information. In this study, random forest machine learning algorithm for classification processing is applied with radiometric features (Red band, Green band and Blue band) and geometric characteristics derived from covariance feature (curvature, omnivariance, flatness, linearity, surface variance, anisotropy and normalized terrain surface) of points. In addition, the case study is presented in order to test applicability of the proposed methodology to acquire an accuracy and performance of random forest method on the UAV based point cloud. After the classification processing, a class assigned each point from the model was compared with the reference data class. Lastly, the overall accuracy of the classification was achieved as 96% and the Kappa index was reached to 91% on data set.

___

  • Akar, Ö., Güngör, O. (2012). Rastgele orman algoritması kullanılarak çok bantlı görüntülerin sınıflandırılması. Jeodezi ve Jeoinformasyon Dergisi. doi: 10.9733/jgg.241212.1t
  • Akgül, M., Yurtseven, H., Demir, M., Akay, A. E., Gülci, S., Öztürk, T. (2016). İnsansız hava araçları ile yüksek hassasiyette sayısal yükseklik modeli üretimi ve ormancılıkta kullanım olanakları. İstanbul Üniversitesi Orman Fakültesi Dergisi, 66(1). doi:10.17099/jffiu.23976
  • Arya, S., Mount, D., Kemp, S., Jefferis, G. (2019). RANN: Fast nearest neighbour search (wraps ANN library) using l2 metric. R package version 2.6, 1.
  • ASPRS. (2019). LAS Specification 1.4 - R14. Retrieved from http://www.asprs.org/wpcontent/ uploads/2019/03/LAS_1_4_r14.pdf
  • Bivand, R. S., Pebesma, E. J., Gomez-Rubio, V., Pebesma, E. J. (2008). Applied spatial data analysis with R (Vol. 747248717): Springer.
  • Blomley, R., Weinmann, M., Leitloff, J., Jutzi, B. (2014). Shape distribution features for point cloud analysis – a geometric histogram approach on multiple scales. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, II-3, 9-16. doi:10.5194/isprsannals-II-3-9-2014
  • Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
  • Canaz Sevgen, S. (2019). Airborne Lidar Data Classification in Complex Urban Area Using Random Forest: A Case Study of Bergama, Turkey. International Journal of Engineering and Geosciences. doi:10.26833/ijeg.440828
  • Chen, B., Shi, S., Gong, W., Zhang, Q., Yang, J., Du, L., Sun, J., Zhang, Z., Song, S. (2017). Multispectral LiDAR Point Cloud Classification: A Two-Step Approach. Remote Sensing, 9(4), 373. doi:10.3390/rs9040373
  • CloudCompare. (2013). Telecom ParisTech (version 2.4) [GPL software]. EDF R&D. Retrieved from http://www.danielgm.net/cc/
  • Cutler, D. R., Edwards, T. C., Jr., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783-2792. doi:10.1890/07-0539.1
  • Çetinkaya, B., Toz, G. (2007). Coğrafi veri seçim işlemi sonuçlarının değerlendirilmesinde hata matrisinin kullanımı. İTÜDERGİSİ/d, 6(5-6), 59-68.
  • Çömert, R., Küçük Matci, D., Avdan, U. (2019). Object Based Burned Area Mapping with Random Forest Algorithm. International Journal of Engineering and Geosciences, 4(2), 78-87. doi:10.26833/ijeg.455595
  • de Almeida, C. T., Galvao, L. S., Aragao, L. E. D. E., Ometto, J. P. H. B., Jacon, A. D., Pereira, F. R. D., Sato, L. Y., Lopes, A. P., Graca, P. M. L. D., Silva, C. V. D., Ferreira-Ferreira, J., Longo, M. (2019). Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms. Remote Sensing of Environment, 232. doi:10.1016/j.rse.2019.111323
  • Demir, N. (2015). Görüntü ve LiDAR verisinden bina tespitinde farklı yöntemler. HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ, 8(1), 55-65.
  • Gong, W., Song, S. L., Zhu, B., Shi, S., Li, F. Q., Cheng, X. W. (2012). Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance. ISPRS Journal of Photogrammetry and Remote Sensing, 69, 1-9. doi:10.1016/j.isprsjprs.2012.02.001
  • Guo, L., Chehata, N., Mallet, C., Boukir, S. (2011). Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1), 56-66. doi:10.1016/j.isprsjprs.2010.08.007
  • Guyot, A., Lennon, M., Thomas, N., Gueguen, S., Petit, T., Lorho, T., Cassen, S., Hubert-Moy, L. (2019). Airborne Hyperspectral Imaging for Submerged Archaeological Mapping in Shallow Water Environments. Remote Sensing, 11(19). doi:10.3390/rs11192237
  • Hackel, T., Wegner, J. D., Schindler, K. (2017). Joint classification and contour extraction of large 3D point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 231-245. doi:10.1016/j.isprsjprs.2017.05.012
  • Karakaş, G. (2018). Lidar Nokta Bulutu Verisi ve Yüksek Çözünürlüklü Ortofotolar Kullanarak Bina Çıkarımı İçin Bir Yaklaşım. Fen Bilimleri Enstitüsü,
  • Kashani, A. G., Olsen, M. J., Parrish, C. E., Wilson, N. (2015). A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration. Sensors, 15(11), 28099-28128. Retrieved from https://www.mdpi.com/1424- 8220/15/11/28099 https://res.mdpi.com/d_attachment/sensors/sensors-15- 28099/article_deploy/sensors-15-28099-v2.pdf
  • Kim, H. B., Sohn, G. (2012). Random Forests Based Multiple Classifier System for Power-Line Scene Classification. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-5/W12, 253-258. doi:10.5194/isprsarchives-XXXVIII-5-W12-253-2011
  • Kraus, K., Pfeifer, N. (1998). Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 53(4), 193-203. doi:10.1016/S0924-2716(98)00009-4
  • Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28(5), 1-26.
  • Liaw, A., Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18-22.
  • Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2), 91-110. doi:10.1023/b:Visi.0000029664.99615.94
  • Luo, L., Wang, X. Y., Guo, H. D., Lasaponara, R., Zong, X., Masini, N., Wang, G. Z., Shi, P. L., Khatteli, H., Chen, F. L., Tariq, S., Shao, J., Bachagha, N., Yang, R. X., Yao, Y. (2019). Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907-2017). Remote Sensing of Environment, 232. doi:10.1016/j.rse.2019.111280
  • Nevalainen, O., Honkavaara, E., Tuominen, S., Viljanen, N., Hakala, T., Yu, X. W., Hyyppa, J., Saari, H., Polonen, I., Imai, N. N., Tommaselli, A. M. G. (2017). Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sensing, 9(3). doi:10.3390/rs9030185
  • Niemeyer, J., Rottensteiner, F., Soergel, U. (2014). Contextual classification of lidar data and building object detection in urban areas. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 152-165. doi:10.1016/j.isprsjprs.2013.11.001
  • Niu, Z., Xu, Z. G., Sun, G., Huang, W. J., Wang, L., Feng, M. B., Li, W., He, W. B., Gao, S. (2015). Design of a New Multispectral Waveform LiDAR Instrument to Monitor Vegetation. Ieee Geoscience and Remote Sensing Letters, 12(7), 1506-1510. doi:10.1109/Lgrs.2015.2410788
  • Ok, A. Ö., Akar, Ö., Güngör, O. (2011). Rastgele Orman Sınıflandırma Yöntemi Yardımıyla Tarım Alanlarındaki Ürün Çeşitliliğinin Sınıflandırılması. Paper presented at the TUFUAB 2011 VI. Teknik Sempozyumu.
  • Özbay, E. (2016). Nokta bulutu verilerinden nesne ayırt etme/Distinguishing objects on point cloud data. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 16(Özel Sayı), 128‐136.
  • Özdemir, E., Remondino, F. (2019). Classification pf Aerial point clouds with deep learning. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
  • Öztürk, O., Bilgilioğlu, B. B., Çelik, M. F., Bilgilioğlu, S. S., Uluğ, R. (2017). İnsanız Hava Aracı (İHA) Görüntüleri İle Ortofoto Üretiminde Yükseklik Ve Kamera Açısının Doğruluğa Etkisinin Araştırılması. Geomatik, 2(3), 135-142. doi:10.29128/geomatik.327049
  • Pan, Y. F., Zhang, X. F., Cervone, G., Yang, L. P. (2018). Detection of Asphalt Pavement Potholes and Cracks Based on the Unmanned Aerial Vehicle Multispectral Imagery. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10), 3701-3712. doi:10.1109/Jstars.2018.2865528
  • Pandey, P. C., Koutsias, N., Petropoulos, G. P., Srivastava, P. K., Ben Dor, E. (2019). Land use/land cover in view of earth observation: data sources, input dimensions, and classifiers-a review of the state of the art. Geocarto International. doi:10.1080/10106049.2019.1629647
  • Ramasubramanian, K., Singh, A. (2017). Machine learning using R: Springer.
  • Roussel, J.-R., Auty, D. (2017). lidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications. (https://github.com/Jean-Romain/lidR).
  • Shan, J., Toth, C. K. (2018). Topographic Laser Ranging and Scanning.
  • Sohn, G., Jwa, Y., Kim, H. B. (2012). Automatic Powerline Scene Classification and Reconstruction Using Airborne Lidar Data. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, I-3, 167-172. doi:10.5194/isprsannals-I-3-167-2012
  • Şahin, B., Güzel, C., Baş, S., Türker, M. (2018). 3DETECTOR-LIDAR nokta bulutu verisinden otomatik ağaç konumu belirleme sistemi. Paper presented at the VII. Uzaktan Algılama-CBS Sempozyumu, Eskisehir.
  • Taşcı, E., Onan, A. (2016). K-en yakın komşu algoritması parametrelerinin sınıflandırma performansı üzerine etkisinin incelenmesi. Akademik Bilişim.
  • Team, R. C. (2019). R: A Language and Environment for Statistical Computing In R Foundation for Statistical Computing (Vol. Vienna, Austria).
  • Tóvári, D., Pfeifer, N. (2005). Segmentation based robust interpolation-a new approach to laser data filtering. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(3/19), 79- 84.
  • Ulvı̇ , A. (2018). Analysis of the Utility of the Unmanned Aerial Vehicle (Uav) in Volume Calculation by Using Photogrammetric Techniques. International Journal of Engineering and Geosciences. doi:10.26833/ijeg.377080
  • Ulvi, A., Toprak, A. S. (2016). Investigation of Three- Dimensional Modelling Availability Taken Photograph of the Unmanned Aerial Vehicle; Sample of Kanlidivane Church. International Journal of Engineering and Geosciences, 1(1), 1-7. Retrieved from ://WOS:000439136300001
  • Ulvi, A., Yakar, M., Yiğit, A. Y., Kaya, Y. (2020). İha ve Yersel Fotogrametrik Teknikler Kullanarak Aksaray Kızıl Kilisenin 3b Modelinin Ve Nokta Bulutunun Elde Edilmesi. Geomatik, 5(1), 22-30. doi:10.29128/geomatik.560179
  • Vosselman, G. (2000). Slope Based Filtering Of Laser Altimetry Data. Arch. Photogramm. Remote Sens., 3, 935–942.
  • Wichmann, V., Bremer, M., Lindenberger, J., Rutzinger, M., Georges, C., Petrini-Monteferri, F. (2015). Evaluating the Potential of Multispectral Airborne Lidar for Topographic Mapping and Land Cover Classification. Isprs Geospatial Week 2015, Ii-3(W5), 113-119. doi:10.5194/isprsannals-II-3-W5-113-2015
  • Yadav, M., Singh, A. K. (2017). Rural Road Surface Extraction Using Mobile LiDAR Point Cloud Data. Journal of the Indian Society of Remote Sensing. doi:10.1007/s12524-017-0732-4
  • Zeybek, M., Şanlıoğlu, İ. (2019a). Point cloud filtering on UAV based point cloud. Measurement, 133, 99-111. doi:10.1016/j.measurement.2018.10.013
  • Zeybek, M., Şanlıoğlu, İ. (2019b). Topoğrafik Yüzey Değişimlerinin Görüntü İşleme Teknikleriyle Belirlenmesi Üzerine Bir Araştırma. Doğal Afetler ve Çevre Dergisi, 5(2), 350-367.
  • Zhang, K. Q., Chen, S. C., Whitman, D., Shyu, M. L., Yan, J. H., Zhang, C. C. (2003). A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 872-882. doi:10.1109/Tgrs.2003.810682
  • Zhang, W. M., Qi, J. B., Wan, P., Wang, H. T., Xie, D. H., Wang, X. Y., Yan, G. J. (2016). An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sensing, 8(6), 501. doi:10.3390/rs8060501
  • Zou, X., Cheng, M., Wang, C., Xia, Y., Li, J. (2017). Tree classification in complex forest point clouds based on deep learning. Ieee Geoscience and Remote Sensing Letters, 14(12), 2360-2364.