Robust local parameter estimator based on least absolute value estimator
Robust local parameter estimator based on least absolute value estimator
Changes in weather conditions such as temperature and humidity, miscommunication between the control center and circuit breaker transducers and tap changers, and inaccurate manufacturing data may cause parameter errors. Because of incorrect parameters, the state estimator may provide biased state estimates, which may lead to many serious economic and operational results. In order to prevent that, one must identify and correct those parameter errors. This work proposes a local parameter estimator based on the least absolute value (LAV) estimator, which is known to be robust against bad measurements, i.e. measurements with gross error. Considering the increasing number of phasor measurement units (PMUs), as well as their fast refresh rate and high accuracy, the proposed method will employ PMU measurements in local parameter estimation. In general, a PMU measures the current phasor flowing through a branch and the voltage phasor of the sending bus of that branch. However, those two measurements are not sufficient to estimate the parameters of the considered branch. Therefore, multiple measurements taken at different time instants will be used in the parameter estimation process for measurement redundancy, assuming that the line parameters and transformer taps are constant. The proposed method also assumes that the state estimates are available. The LAV estimator is computationally expensive, but it provides unbiased state estimates even in the presence of bad data, provided that enough measurement redundancy is available. This deficiency will be eliminated by performing local parameter estimation.
___
- [1] Abur A, Gomez-Exposito A. Power System State Estimation: Theory and Implementation. New York, NY, USA: Marcel Dekker, 2004.
- [2] Schweppe FC, Wildes J. Power system static-state estimation, part I: exact model. IEEE T Power Ap Syst 1970; 89: 120-125.
- [3] Schweppe FC, Rom DB. Power system static-state estimation, part II: approximate model. IEEE T Power Ap Syst 1970; 89: 125-130.
- [4] Schweppe FC. Power system static-state estimation, part III: implementation. IEEE T Power Ap Syst 1970; 89: 130-135.
- [5] Fletcher D, Stadlin W. Transformer tap position estimation. IEEE T Power Ap Syst 1983; 102: 3680-3686.
- [6] Liu W, Wu F, Lun S. Estimation of parameter errors from measurement residuals in state estimation. IEEE T Power Syst 1992; 7: 81-89.
- [7] Mukherjee B, Fuerst G, Hanson S, Monroe C. Transformer tap estimation - field experience. IEEE T Power Ap Syst 1984; 103: 1454-1458.
- [8] London Jr JBA, Mili L, Bretas NG. An observability analysis method for a combined parameter and state estimation of a power system. In: Proceedings of the 8th International Conference on Probabilistic Methods Applied to Power Systems; 1216 September 2004; Ames, IA, USA.
- [9] Gomez-Exposito A, De la Villa Jaen A, Abur A, Rousseaux P, Gomes-Quiles C. On the Use of PMUs in Power State Estimation. 7th Framework Programme (grant agreement No. 211407).
- [10] Quintana V, Van Cutsem T. Real-time processing of transformer tap positions. CEEJ 1987; 12: 171-180.
- [11] Quintana V, Van Cutsem T. Power system network parameter estimation. Optim Contr Appl Met 1988; 9: 303-323.
- [12] Smith R. Transformer tap estimation at Florida Power Corporation. IEEE T Power Ap Syst 1985; 104: 3442-3445.
- [13] Van Cutsem T, Quintana V. Network parameter estimation using online data with application to transformer tap position estimation. IEE Proc-C1988; 135: 31-40.
- [14] Clements K, Denison O, Ringlee R. The effects of measurement non-simultaneity, bias and parameter uncertainty on power system state estimation. In: Proceedings of the PICA Conference; June 1973; pp. 327-331.
- [15] Liu W, Lim S. Parameter error identification and estimation in power system state estimation. IEEE T Power Syst 1995; 10: 200-209.
- [16] Reig A, Alvarez C. Off-line parameter estimation techniques for network model data tuning. In: Proceedings of the IASTD Power High Tech 89. Valencia, Spain. pp. 205-210.
- [17] Teixeira P, Brammer S, Rutz W, Merritt W, Salmonsen J. State estimation of voltage and phase-shift transformer tap settings. IEEE T Power Syst 1992; 7: 1386-1393.
- [18] Zarco P, Gomez A. Off-line determination of network parameters in state estimation. In: Proceedings of the 12th Power System Computation Conference; August 1996; Dresden, Germany. pp. 1207-1213.
- [19] Zhu J, Liu F, Mei S. Branch parameter error identification and estimation in power systems. In: Proceedings of the 2010 First International Conference on Pervasive Computing, Signal Processing and Applications.
- [20] Monticelli A, Garcia A. Reliable bad data processing for real-time state estimation. IEEE T Power Ap Syst 1983; 102: 1126-1139.
- [21] Celik MK, Abur A. Use of scaling in WLAV estimation of power system states. IEEE T Power Syst 1992; 7: 684-692.
- [22] Gol M, Abur A. LAV based robust state estimation for systems measured by PMUs. IEEE T Smart Grid 2015; 5: 1808-1814.
- [23] Gol M, Abur A. PMU Placement for robust state estimation. In: Proceedings of the North American Power Symposium 2013; September 2013; Manhattan, KS, USA.
- [24] Phadke AG, Thorpe JS. Synchronized Phasor Measurements and Their Applications. Berlin, Germany: Springer, 2008.
- [25] Phadke AG. Synchronized phasor measurements - a historical overview. In: Proceedings of the IEEE PES Transmission and Distribution Conference and Exhibition 2002; 610 October 2002; pp. 476-479.
- [26] Irving MR, Owen RC, Sterling MJH. Power system state estimation using linear programming. Proc Inst Electr Eng 1978; 125: 879-885.
- [27] Ozdemir V, Gol M. A robust parameter estimation method based on LAV estimator. In: Proceedings of the Modern Electric Power Systems Conference; 69 July 2015; Wroclaw, Poland.