Prediction of long-term physical properties of low density polyethylene (LDPE) cable insulation materials by artificial neural network modeling approach under environmental constraints

Prediction of long-term physical properties of low density polyethylene (LDPE) cable insulation materials by artificial neural network modeling approach under environmental constraints

This study quantifies long-term physical properties of low density polyethylene (LDPE) cables insulations exposed to environmental constraints such as UV radiation and temperature via both experimental measurements and mathematical modeling approach. For this purpose, tensile test and electrical breakdown test were carried out to determine elongation at break, tensile strength, and dielectric strength of unaged and aged specimens, respectively. Experimental results showed that both UV and temperature exposures affected the LDPE properties, significantly. A supervised artificial neural network (ANN) trained by the Levenberg–Marquardt algorithm was designed for predicting the long-term characteristics of specimens and also for minimizing the experimental procedures. Modeling work showed that the proposed ANN yielded successful estimations and predictions about the service life of thermoplastic cable insulation materials for maintaining the process.

___

  • [1] Lamnii H, Abdelaziz MN, Ayoub G, Colin X, Maschke U. Experimental investigation and modeling attempt on the effects of ultraviolet aging on the fatigue behavior of an LDPE semi-crystalline polymer. International Journal of Fatigue2021; 142:1-12. doi:10.1016/j.ijfatigue.2020.105952
  • [2] Mebarki F, David E. Dielectric characterization of thermally aged recycled Polyethylene Terephthalate and Polyethylene Naphthalate reinforced with inorganic fillers. Polymer Engineering and Science 2018; 58 (5): 701-712. doi: 10.1002/pen.24602
  • [3] Hedir A, Bechouche A, Moudoud M, Teguar M, Lamrous O et al. Experimental and predicted XLPE cable insulation properties under UV radiation. Turkish Journal of Electrical Engineering Computer Sciences 2020; 28 (3): 1763- 1775. doi:10.3906/elk-1910-58
  • [4] Martinez-Colunga JG, Sanchez-Valdes S, Ramos-deValle LF, Ramirez-Vargas E, Avila-Orta C et al. Effect of ultrasonic irradiation on low-density polyethylene molecular structure. Polymer Bulletin 2019;77: 5303 - 5321. doi:10.1007/s00289-019-03006-4
  • [5] Rodriguez AK, Mansoor B, Ayoub G, Colin X,Benzerga AA. Effect of UV-aging on the mechanical and fracture behavior of low density polyethylene. Polymer Degradation and Stability 2020; 180:1-11 109185. doi: 10.1016/j.polymdegradstab.2020.109185
  • [6] Morris EA, Siew WH. Partial discharge activity in polymeric cable insulation under high voltage AC and DC. In: 2017 52nd International Universities Power Engineering Conference (UPEC); 2017. pp. 1-4.
  • [7] Gómez-Méndez LD, Moreno-Bayona DA, Poutou-Piñales RA, Salcedo-Reyes JC, Pedroza-Rodríguez AM. Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus. PloS one 2018; 13 (9): e0203786. doi: 10.1371/journal.pone.0203786
  • [8] Hiejima Y, Kida T, Takeda K, Igarashi T,Nitta KH. Microscopic structural changes during photodegradation of low-density polyethylene detected by Raman spectroscopy. Polymer Degradation and Stability 2018; 150: 67-72. doi:10.1016/j.polymdegradstab.2018.02.010
  • [9] Yagoubi W, Abdelhafidi A, Sebaa M, Chabira SF. Identification of carbonyl species of weathered LDPE films by curve fitting and derivative analysis of IR spectra. Polymer Testing 2015; 44: 37- 48.doi:10.1016/j.polymertesting.2015.03.008
  • [10] Luyt AS, Gasmi SA, Malik SS, Aljindi RM, Ouederni M et al. Artificial weathering and accelerated heat aging studies on low-density polyethylene (LDPE) produced via autoclave and tubular process technologies. Express Polymer Letters 2021; 15 (2):121-136. doi:10.3144/expresspolymlett.2021.12
  • [11] Banda ME, Griseri V, Teyssedre G,Le Roy S. Polarization of electron-beam irradiated LDPE films: contribution to charge generation and transport. Journal of Physics D: Applied Physics 2018; 51 (15):155303. doi:10.1088/1361- 6463/aab467
  • [12] Hedir A, Moudoud M, Lamrous O, Rondot S, Jbara O et al. Ultraviolet radiation aging impact on physicochemical properties of crosslinked polyethylene cable insulation. Journal of Applied Polymer Science 2020; 137 (16): 48575. doi:10.1002/app.48575
  • [13] Kemari Y, Mekhaldi A, Teyssèdre G, Teguar M. Correlations between structural changes and dielectric behavior of thermally aged XLPE. IEEE Transactions on Dielectrics and Electrical Insulation 2019; 26 (6):1859-1866. doi:10.1109/tdei.2019.008189
  • [14] Da Cruz M, Van Schoors L, Benzarti K, Colin X. Thermo−oxidative degradation of additive free polyethylene. Part I. Analysis of chemical modifications at molecular and macromolecular scales. Journal of Applied Polymer Science 2016; 133 (18). doi:10.1002/app.43287
  • [15] Li H, Zhai S, Hu L, Chen J. The energy distribution of trapped charges on the surface of cross-linked polyethylene thermally aged at different temperatures. Journal of Materials Science: Materials in Electronics 2019; 30 (9):9015- 9021.doi:10.1007/s10854-019-01230-2
  • [16] Suraci SV, Fabiani D, Mazzocchetti L, Maceratesi V, Merighi S. Investigation on thermal degradation phenomena on low density polyethylene (LDPE) through dielectric spectroscopy. In 2018 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP); 2018. pp. 434-437.
  • [17] Wang C, Xie Y, Pan H, Wang Y. Effect of Thermal Aging on Electrical Properties of Low Density Polyethylene. Journal of Electrical Engineering and Technology 2018; 13 (6): 2412-2420. doi: 10.5370/JEET.2018.13.6.2412
  • [18] Li Z,Chen G. Space charge in thermally aged polyethylene and its electrical performance. Materials Research Express 2018; 6 (3):035308. doi:10.1088/2053-1591/aaf61b
  • [19] Douminge L, Mallarino S, Cohendoz S, Feaugas X, Bernard J. Extrinsic fluorescence as a sensitive method for studying photo-degradation of high density polyethylene part I. Current Applied Physics 2010; 10 (4): 1211-1215. doi:10.1016/j.cap.2010.02.045
  • [20] Suresh B, Maruthamuthu S, Kannan M, Chandramohan A. Mechanical and surface properties of low-density polyethylene film modified by photo-oxidation. Polymer Journal 2011; 43 (4): 398-406. doi:10.1038/pj.2010.147
  • [21] Lanfranconi MR, Alvarez VA, Perez CJ. Isothermal crystallization of gamma irradiated LDPE in the presence of oxygen. Radiation Physics and Chemistry 2015; 111: 74-80. doi:10.1016/j.radphyschem.2015.02.021
  • [22] Martínez KI, González−Mota R, Soto−Bernal JJ, Rosales−Candelas I. Evaluation by IR spectroscopy of the degradation of different types of commercial polyethylene exposed to UV radiation and domestic compost in ambient conditions. Journal of Applied Polymer Science 2021; 138 (14): 50158. doi: 10.1002/app.50158
  • [23] Bessissa L, Boukezzi L, Mahi D. Influence of fuzzy parameters on the modeling quality of XLPE insulation properties under thermal aging. Fuzzy Information and Engineering 2016; 8 (1):101-112. doi:10.1016/j.fiae.2016.03.006
  • [24] Yilmaz AA, Guzel MS, Bostanci E, Askerzadea I. novel action recognition framework based on deep-learning and genetic algorithms,IEEE Access 2020; 8:100631-100644. doi:10.1109/access.2020.2997962
  • [25] Karim AM, Guzel MS, Tolun M, Kaya H, Çelebi F. A New Generalized Deep Learning Framework Combining Sparse Auto-encoder and Taguchi Method for Novel Data Classification and Processing. Mathematical Problems in Engineering 2018; 1-13. doi:10.1155/2018/3145947
  • [26] Doblies A, Boll B, Fiedler B. Prediction of thermal exposure and mechanical behavior of epoxy resin using artificial neural networks and Fourier transform infrared spectroscopy. Polymers 2019; 11 (2):363. doi:10.3390/polym11020363
  • [27] Heidari E, Sobati MA,Movahedirad S. Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN).Chemometrics and Intelligent Laboratory Systems 2016; 155: 73-85. doi:10.1016/j.chemolab.2016.03.031
  • [28] Gopinath S, Sathiyasekar K, Padmanaban S, Chokkalingam B. Insulation condition assessment of high−voltage rotating machines using hybrid techniques. ET Generation, Transmission Distribution 2018; 13 (2): 171-180. doi: 10.1049/iet-gtd.2018.6500
  • [29] Chen K, Huang C, He J. Fault detection, classification and location for transmission lines and distribution systems: a review on the methods. High voltage 2016; 1 (1): 25-33. doi: 10.1049/hve.2016.0005
  • [30] Bessissa L, Boukezzi L, Mahi D. A fuzzy logic approach to model and predict HV cable insulation behaviour under thermal aging. Acta Polytechnica Hungarica 2014; 11 (3): 107-123. doi: 10.12700/aph.11.03.2014.03.7
  • [31] Poluyanovich NK, Medvedev MY, Dubyago MN, Azarov NV, Ogrenichev AV. Estimation of Cable Lines Insulating Materials Resource Using Multistage Neural Network Forecasting Method. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Springer, Cham; 2020.pp. 288-296.
  • [32] Jabha DJ, Selvi K , Joselin R. A new approach for the failure prediction in XLPE power cables using acoustic emission technique. International Journal of Electrical Power Energy Systems 2016; 81: 336- 345.doi:10.1016/j.ijepes.2016.02.019
  • [33] Slimani F, Hedir A, Moudoud M, Loucif A. Behaviour of Low Density Polyethylene Aged Under UV Radiation. In The International Symposium on High Voltage Engineering, Springer, Cham;2019. pp. 815-822.
  • [34] Hedir A, Slimani F, Moudoud M, Bellabas F, Loucif A. Impact of Thermal Constraint on The Low Density Polyethylene (LDPE) Properties. In The International Symposium on High Voltage Engineering Springer, Cham; 2019; pp. 952-960.
  • [35] Lv C, Xing Y, Zhang J, Na X, Li Y, Liu T et al. Levenberg–Marquardt backpropagation training of multilayer neural networks for state estimation of a safety−critical cyber−physical system. IEEE Transactions on Industrial Informatics 2017; 14 (8): 3436-3446.doi:10.1109/tii.2017.2777460
  • [36] Malik ZA, Haleem N, Malik MH, Tanwari A. Predicting the tensile strength of polyester/cotton blended woven fabrics using feed forward back propagation artificial neural networks. Fibers and Polymers 2012; 13 (8):1094-1100. doi:10.1007/s12221-012-1094-8
  • [37] Beale MH, Hagan MT,Demuth HB. Neural network toolbox user’s guide. The MathWorks Inc 1992; 103.
  • [38] Sheikh N, Akhavan A, Naimian F, Khoylou F, Hassanpour S et al. Formulation of a photosensitized polyethylene film; its structure and property variation under the weathering conditions of tehran. Journal of Polymers and the Environment 2006; 14(1): 103-109. doi:10.1007/s10924-005-8712-0
  • [39] Kim C, Jin Z, Jiang P, Zhu Z,Wang G. Investigation of dielectric behavior of thermally aged XLPE cable in the high-frequency range. Polymer testing 2006; 25 (4): 553-561. doi:10.1016/j.polymertesting.2006.03.009
  • [40] Boukezzi L, Bessissa L, Boubakeur A, Mahi D. Neural networks and fuzzy logic approaches to predict mechanical properties of XLPE insulation cables under thermal aging. Neural Computing and Applications 2017; 28 (11):3557- 3570. doi:10.1007/s00521-016-2259-y
  • [41] Shi X, Wang J, Stapf S, Mattea C, Li W et al. Effects of thermo−oxidative aging on chain mobility, phase composition, and mechanical behavior of high−density polyethylene. Polymer Engineering Science 2011; 51 (11): 2171-2177. doi:10.1002/pen.21988
  • [42] Kim C, Jiang P, Liu F, Hyon S, Ri MG et al. Investigation on dielectric breakdown behavior of thermally aged crosslinked polyethylene cable insulation. Polymer Testing 2019; 80: 106045. doi:10.1016/j.polymertesting.2019.106045
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK