Optimized cancer detection on various magnified histopathological colon images based on DWT features and FCM clustering

Optimized cancer detection on various magnified histopathological colon images based on DWT features and FCM clustering

Due to the morphological characteristics and other biological aspects in histopathological images, the computerized diagnosis of colon cancer in histopathology images has gained popularity. The images acquired using the histopathology microscope may differ for greater visibility by magnifications. This causes a change in morphological traits leading to intra and inter-observer variability. An automatic colon cancer diagnosis system for various magnification is therefore crucial. This work proposes a magnification independent segmentation approach based on the connected component area and double density dual tree DWT (discrete wavelet transform) coefficients are derived from the segmented region. The derived features are reduced further shortened with fuzzy c-means. Further, with the aid of artificial neural network (ANN) optimized with salp swarm optimization (SSO), images are classified into normal and abnormal ones. This magnification independent proposed framework is evaluated across four different datasets (two realtime datasets and two public datasets) with different magnifications and the outcomes of all datasets were substantial when compared with the existing techniques. The proposed framework has shown strong concordance for cancer detection and can assist pathologists with a second opinion.

___

  • [1] Melissa CS. Colon Cancer (Colorectal Cancer). MedicineNet. https://www.medicinenet.com/coloncancer/article.htm 2019; Accessed 12 May 2021
  • [2] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer Journal for Clinicians 2021; 71 (3): 209-249. doi: 10.3322/caac.21660
  • [3] Prashant M, Krishnan S, Meesha C, Priyanka D, Kondalli LS et al. Cancer Statistics, 2020: Report From National Cancer Registry Programme, India. JCO Global Oncology 2020; 6: 1063-1075. doi: 10.1200/GO.20.00122.
  • [4] Thomas GD, Dixon M, Smeeton N, Williams N. Observer variation in the histological grading of rectal carcinoma. Journal of Clinical Pathology 1983; 36 (4): 385-391. doi: 10.1136/jcp.36.4.385.
  • [5] Andrion A, Magnani C, Betta PG, Donna A, Mollo F et al. Malignant mesothelioma of the pleura: interobserver variability. Journal of Clinical Pathology 1995; 48 (9): 856-860. doi: 10.1136/jcp.48.9.856.
  • [6] Elazab N, Soliman H, El-Sappagh S, Islam SMR, Elmogy M. Objective Diagnosis for Histopathological Images Based on Machine Learning Techniques: Classical Approaches and New Trends. Mathematics 2020; 8 (11): 1863. doi: 10.3390/math8111863
  • [7] Rathore S, Hussain M, Ali A, Khan A. A Recent Survey on Colon Cancer Detection Techniques. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2013; 10 (3): 545-563. doi: 10.1109/TCBB.2013.84
  • [8] Angel Arul Jothi J, Mary Anita Rajam V. A survey on automated cancer diagnosis from histopathology images. Artificial Intelligence Review 2017; 48: 31–81. doi: 10.1007/s10462-016-9494-6
  • [9] Rathore S, Hussain M, Khan A. Automated colon cancer detection using hybrid of novel geometric features and some traditional features. Computers in Biology and Medicine 2015; 65: 279–296. doi: 10.1016/j.compbiomed.2015.03.004
  • [10] Rathore S, Aksam Iftikhar M. CBISC: A novel approach for colon biopsy image segmentation and classification. Arabian Journal for Science and Engineering 2016; 41: 5061–5076. doi: 10.1007/s13369-016-2187-2
  • [11] Babu T, Gupta D, Singh T, Hameed S. Colon cancer prediction on different magnified colon biopsy images. In: 2018 Tenth International Conference on Advanced Computing (ICoAC), Chennai, India 2018; 277–280. doi: 10.1109/ICoAC44903.2018.8939067
  • [12] Babu T, Gupta D, Singh T, Hameed S, Nayar R et al. Cancer screening on Indian colon biopsy images using texture and morphological features. In: 2018 International Conference on Communication and Signal Processing (ICCSP), Chennai, India 2018; 0175–0181. doi: 10.1109/ICCSP.2018.8524492
  • [13] Babu T, Gupta D, Singh T, Hameed S. Prediction of normal & grades of cancer on colon biopsy images at different magnifications using minimal robust texture & morphological features. Indian Journal of Public Health Research & Development 2020; 11 (1): 695–701. doi: 10.37506/ijphrd.v11i1.532
  • [14] Krishnan KR, Radhakrishnan S. Hybrid approach to classification of focal and diffused liver disorders using ultrasound images with wavelets and texture features. IET Image Processing 2017; 11 (7): 530–538. doi: 10.1049/ietipr.2016.1072
  • [15] Abdulhay E, Mohammed MA, Ibrahim DA, Arunkumar N, Venkatraman V. Computer aided solution for automatic segmenting and measurements of blood leucocytes using static microscope images. Journal of medical systems 2018; 42 (4): 58. doi: 10.1007/s10916-018-0912-y
  • [16] Rathore S, Iftikhar MA, Chaddad A, Niazi T, Karasic T et al. Segmentation and grade prediction of colon cancer digital pathology images across multiple institutions. Cancers 2019; 11 (11): 1700. doi: 10.3390/cancers11111700
  • [17] Sirinukunwattana K, Snead DRJ, Rajpoot N M. A stochastic polygons model for glandular structures in colon histology images. IEEE Transactions on Medical Imaging 2015; 34 (11): 2366–2378. doi: 10.1109/TMI.2015.2433900
  • [18] Husham S, Mustapha A, Mostafa S, Al-Obaidi M, Mohammed M et al. Comparative analysis between active contour and otsu thresholding segmentation algorithms in segmenting brain tumor magnetic resonance imaging. Journal of Information Technology Management 2020; 12: 48-61. doi: 10.22059/jitm.2020.78889
  • [19] Hussein IJ, Burhanuddin MA, Mohammed MA, Elhoseny M, Garcia-Zapirain B et al. Fully automatic segmentation of gynaecological abnormality using a new viola–jones model. Computers, Materials & Continua 2021; 66 (3): 3161– 3182. doi: 10.32604/cmc.2021.012691
  • [20] Babu T, Singh T, Gupta D. Colon cancer prediction using 2DRe CA segmentation and hybrid features on histopathology images. IET Image Processing 2020; 14(16): 4144-4157. doi: 10.1049/iet-ipr.2019.1717
  • [21] Janowczyk A, Madabhushi A. Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. Journal of Pathology Informatics 2016; 7 (1): 29. doi: 10.4103/2153-3539.186902
  • [22] Kainz P, Pfeiffer M, Urschler M. Semantic segmentation of colon glands with deep convolutional neural networks and total variation segmentation. PeerJ 2015; 5: e3874. doi: 10.5167/uzh-121723
  • [23] Awan R, Sirinukunwattana K, Epstein D, Jefferyes S, Qidwai U et al. Glandular morphometrics for objective grading of colorectal adenocarcinoma histology images. Scientific Reports 2017; 7: 16852. doi: 10.1038/s41598-017-16516-w
  • [24] Lichtblau D, Stoean C. Cancer diagnosis through a tandem of classifiers for digitized histopathological slides. PLOS ONE 2019; 14 (1): 1–20. doi: 10.1371/journal.pone.0209274
  • [25] Spanhol FA, Oliveira LS, Petitjean C, Heutte LA. Dataset for breast cancer histopathological image classification. IEEE Transactions on Biomedical Engineering 2016; 63 (7): 1455–1462. doi: 10.1109/TBME.2015.2496264
  • [26] Iizuka O, Kanavati F, Kato K, Rambeau M, Arihiro K et al. Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours. Scientific Reports 2020; 10: 1504. doi: 10.1038/s41598-020-58467-9
  • [27] Dorsey RE, Johnson JD, Mayer WJ. A genetic algorithm for the training of feedforward neural networks. Advances in artificial intelligence in economics, finance and management 1994; 1: 93-111.
  • [28] Karaboga D, Akay B, Ozturk C. Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neural Networks. In: Torra V, Narukawa Y, Yoshida Y (editor). International Conference on Modeling Decisions for Artificial Intelligence, Springer, Berlin, Heidelberg 2007; 318-329. doi: 10.1007/978-3-540-73729-2_30
  • [29] Suresh A, Harish KV, Radhika N. Particle Swarm Optimization over Back Propagation Neural Network for Length of Stay Prediction. Procedia Computer Science 2013; 46: 268-275, doi: 10.1016/j.procs.2015.02.020.
  • [30] Mavrovouniotis M, Yang S. Training neural networks with ant colony optimization algorithms for pattern classification. Soft Computing 2015; 19: 1511–1522. doi: 10.1007/s00500-014-1334-5
  • [31] Stoean C, Stoean R, Sandita A, Ciobanu D, Mesina C et al. Svm based cancer grading from histopathological images using morphological and topological features of glands and nuclei. In: Pietro G., Gallo L., Howlett R., Jain L. (editors) Intelligent Interactive Multimedia Systems and Services. Smart Innovation, Systems and Technologies, Springer, Cham 2015; pp. 145-155. doi: 10.1007/978-3-319-39345-2_13
  • [32] Reinhard E, Adhikhmin M, Gooch B, Shirley P. Color transfer between images. IEEE Computer Graphics and Applications 2001; 21 (5): 34-41. doi: 10.1109/38.946629.
  • [33] Selesnick IW. The double-density dual-tree DWT. IEEE Transactions on Signal Processing 2004; 52 (5): 1304-1314. doi: 10.1109/TSP.2004.826174.
  • [34] Nirmalakumari K, Rajaguru H, Rajkumar P. Performance analysis of classifiers for colon cancer detection from dimensionality reduced microarray gene data. International Journal of Imaging Systems Technology 2020; 30: 1012– 1032. doi: 10.1002/ima.22431
  • [35] Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H et al. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Advances in Engineering Software 2017; 114: 163-191. doi: 10.1016/j.advengsoft.2017.07.002.
  • [36] Ibrahim HT, Mazher WJ, Ucan ON, Bayat O. Feature Selection using Salp Swarm Algorithm for Real Biomedical Datasets. International Journal of Computer Science and Network Security 2017; 17 (12): 13-20.
  • [37] Faris H, Mirjalili S, Aljarah I, Mafarja M, Heidari AA. Salp Swarm Algorithm: Theory, Literature Review, and Application in Extreme Learning Machines. In: Mirjalili S, Song Dong J, Lewis A (editors) Nature-Inspired Optimizers. Studies in Computational Intelligence, Springer, Cham; 2020. pp. 185-199. doi: 10.1007/978-3-030- 12127-3_11
  • [38] Saroja B, Priyadharson AS. Adaptive pillar K-means clustering-based colon cancer detection from biopsy samples with outliers. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 2017; 7 (1): 1-11. doi: 10.1080/21681163.2017.1350603
  • [39] Banwari A, Sengar N, Dutta M. Image Processing Based Colorectal Cancer Detection in Histopathological Images. International Journal of E-Health and Medical Communications 2018; 9: 1-18. doi: 10.4018/IJEHMC.2018040101