A futuristic approach to generate random bit sequence using dynamic perturbed chaotic system

A futuristic approach to generate random bit sequence using dynamic perturbed chaotic system

Most of the web applications require security which in turn requires random numbers. Pseudo-random numbers are required with good statistical properties and efficiency. Use of chaotic map to dynamically perturb another chaotic map that generates the random bit output is introduced in this work. Perturbance is introduced to improvise the chaotic behaviour of a base map and increase the periodicity. PRNG with this architecture is devised to generate random bit sequence from initial keyspace. The statistical properties of newly constructed PRNG are tested with NIST SP 800-22 statistical test suite and were shown to have good randomness. To ensure its usability in cryptographic applications, it has been analyzed for the size of its keyspace, key sensitivity and performance speed. The test results provide evidence that newly designed PRNG has a 3.6% increase in keyspace and a 5% increase in its performance speed compared to existing chaotic PRNGs. The novel PRNG can be used for cryptographic applications with a faster generation of keys and increased security.

___

  • [1] Aljohani M, Ahmad L, Basheri M, Alassafi MO. Performance analysis of cryptographic pseudorandom number generators. IEEE Access 2019; 7: 39794-39805. doi: 10.1109/ACCESS.2019.2907079
  • [2] Guyeux C, Couturier R, Héam P, Bahi JM. Efficient and cryptographically secure generation of chaotic pseudorandom numbers on gpu. The journal of Supercomputing 2015; 71 (10): 3877-3903. doi: 10.1007/s11227-015-1479-8
  • [3] Cicek I, Pusane AE, Dundar G. An Integrated Dual Entropy Core True Random Number Generator. IEEE Transactions on Circuits and Systems II: Express Briefs 2017; 64 (3): 329-333. doi: 10.1109/TCSII.2016.2568181
  • [4] Wang L, Cheng H. Pseudo-random number generator based on logistic chaotic system. Entropy 2019; 21 (10): 960. doi: 10.3390/e21100960
  • [5] Dastgheib MA, Farhang M. A digital pseudo-random number generator based on sawtooth chaotic map with a guaranteed enhanced period. Nonlinear Dynamics 2017; 89 (4): 2957-2966. doi: 10.1007/s11071-017-3638-3
  • [6] François M, Defour D, Negre C. A fast chaos-based pseudo-random bit generator using binary64 floating-point arithmetic. Informatica- An International Journal of Computing and Informatics 2014; 38 (3): 115-124.
  • [7] Avaroglu E, Tuncer T, Özer AB, Türk M. A new method for hybrid pseudo random number generator. Informacije MIDEM 2015; 44 (4): 303-311.
  • [8] Murillo-Escobar MA, Cruz-Hernández C, Cardoza-Avendaño L, Méndez-Ramírez R. A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dynamics 2017; 87 (1): 407-425. doi: 10.1007/s11071-016-3051-3
  • [9] Zhao Y, Gao C, Liu J, Dong S. A self-perturbed pseudo-random sequence generator based on hyperchaos. Chaos, Solitons & Fractals: X 2019; 4: 100023. doi: 10.1016/j.csfx.2020.100023
  • [10] Zhou Y, Hua Z, Pun C, Chen CLP. Cascade chaotic system with applications. IEEE transactions on cybernetics 2014; 45 (9). 2001-2012. doi: 10.1109/TCYB.2014.2363168
  • [11] Abdullah HA, Abdullah HN, Mahmoud Al‐Jawher WA. A hybrid chaotic map for communication security applications. International Journal of Communication Systems 2020; 33 (4). e4236. doi: 0.1002/dac.4236
  • [12] Öztürk I, Kılıç R. A novel method for producing pseudo random numbers from differential equation-based chaotic systems. Nonlinear Dynamics 2015; 80 (3). 1147-1157. doi: 10.1007/s11071-015-1932-5
  • [13] Hamza R. A novel pseudo random sequence generator for image-cryptographic applications. Journal of Information Security and Applications 2017; 35: 119-127. doi: 10.1016/j.jisa.2017.06.005
  • [14] Garcia-Bosque M, Pérez-Resa A, Sánchez-Azqueta C, Aldea C, Celma S. Chaos-based bitwise dynamical pseudorandom number generator on FPGA. IEEE Transactions on Instrumentation Measurement 2018; 68 (1): 291-293. doi: 10.1109/TIM.2018.2877859
  • [15] Liu Y, Luo Y, Song S, Cao L, Liu J, Harkin J. Counteracting dynamical degradation of digital chaotic Chebyshev map via perturbation. International Journal of Bifurcation and Chaos 2017; 27 (3). 1750033. doi: 10.1142/S021812741750033X
  • [16] Alawida M, Samsudin A, Teh JS. Enhanced digital chaotic maps based on bit reversal with applications in random bit generators. Information Sciences 2020; 512: 1155-1169. doi: 10.1016/j.ins.2019.10.055
  • [17] Phatak S, Rao SS. Logistic map: A possible random-number generator. Physical review E 1995; 51 (4): 3670. doi: 10.1103/PhysRevE.51.3670
  • [18] Wu Y, Noonan JP, Yang G, Jin H. Image encryption using the two-dimensional logistic chaotic map. Journal of Electronic Imaging 2012; 21 (1): 013014. doi: 10.1117/1.JEI.21.1.013014
  • [19] Riaz M, Ahmed J, Shah RA, Hussain A. Novel secure pseudorandom number generator based on duffing map. Wireless Personal Communications 2018; 99 (1): 85-93. doi: 10.1007/s11277-017-5039-9
  • [20] Amigó JM, Kocarev L, Szczepanski J. Discrete Lyapunov exponent and resistance to differential cryptanalysis. IEEE Transactions on Circuits Systems II: Express Briefs 2007; 54 (10): 882-886. doi: 10.1109/TCSII.2007.901576
  • [21] Huang X, Liu L, Li X, Yu M, Wu Z. A new two-dimensional mutual coupled logistic map and its application for pseudorandom number generator. Mathematical Problems in Engineering 2019; 2019: 1-10. doi: 10.1155/2019/7685359
  • [22] Smart N. ECRYPT II yearly report on algorithms and keysizes (2010-2011). ECRYPT II 2011;.
  • [23] Wang Y, Zhang Z, Wang G, Liu D. A pseudorandom number generator based on a 4D piecewise logistic map with coupled parameters. International Journal of Bifurcation and Chaos 2019; 29 (9): 1950124. doi: 10.1142/S0218127419501244
  • [24] Tutueva AV, Nepomuceno EG, Karimov AI, Andreev VS, Butusov DN. Adaptive chaotic maps and their application to pseudo-random numbers generation. Chaos, Solitons & Fractals: X 2020; 133: 109615. doi: 10.1016/j.chaos.2020.109615
  • [25] Nesa N, Ghosh T, Banerjee I. Design of a chaos-based encryption scheme for sensor data using a novel logarithmic chaotic map. Journal of Information Security and Applications 2019; 47: 320-328. doi: 10.1016/j.jisa.2019.05.017
  • [26] Hua Z, Zhou Y. Dynamic parameter-control chaotic system. IEEE transactions on cybernetics 2015; 46 (12): 3330- 3341. doi: 10.1109/TCYB.2015.2504180
  • [27] Huang X, Liu L, Li X, Yu M, Wu Z. A new pseudorandom bit generator based on mixing three-dimensional Chen chaotic system with a chaotic tactics. Complexity 2019; 2019: 1-9. doi: 10.1155/2019/6567198
  • [28] Alhadawi HS, Zolkipli MF, Ismail SM, Lambić D. Designing a pseudorandom bit generator based on LFSRs and a discrete chaotic map. Cryptologia 2019; 43 (3): 190-211. doi: 10.1080/01611194.2018.1548390
  • [29] Vani V, Premalatha J, Sathya K. Multi-factor signcryption scheme for secure authentication using hyper elliptic curve cryptography and bio-hash function. Bulletin of the Polish Academy of Sciences. Technical Sciences 2020; 68 (4): 923-935. doi: 10.24425/bpasts.2020.134470
  • [30] Vani V, Premalatha J, Sathya K. Cryptanalysis and enhancement of multi factor remote user authentication scheme based on signcryption. Advances in Mathematics of Communications 2019;. doi: 10.3934/amc.2020103
  • [31] Malathy S, Vanitha CN. Secure Integration of Cyber Security and Internet of Things in Addressing its Challenges. International Journal of Recent Technology and Engineering 2019; 8 (4): 7410-7413.
  • [32] Xianhan Z, Yang C. A Novel Chaotic Map and an Improved Chaos-Based Image Encryption Scheme. The Scientific World Journal 2014; 2014:1-8. doi:10.1155/2014/713541