On the output regulation for linear fractional systems

On the output regulation for linear fractional systems

In this work, the regulation problem is extended to the field of fractional-order linear systems consideringthe Caputo fractional derivative. The regulation equations are obtained on the basis of the Francis equations. It is alsoshown that the linear fractional regulator exists at t = 0 only if the order of the plant is not greater than the order ofthe reference system.

___

  • [1] Khalil HK. Nonlinear Systems. Upper Saddle River, NJ, USA: Prentice Hall, 2002.
  • [2] Francis BA. The linear multivariable regulator problem. SIAM Journal on Control and Optimization 1997; 15: 486-505.
  • [3] Isidori A. Nonlinear Control Systems. Berlin, Germany: Springer, 1995.
  • [4] Meda-Campaña JA, Grande-Meza A, Rubio JDJ, Tapia-Herrera R, Hernández-Cortés T et al. Design of stabilizers and observers for a class of multivariable T–S fuzzy models on the basis of new interpolation functions. IEEE Transactions on Fuzzy Systems 2018; 26 (5): 2649-2662. doi: 10.1109/TFUZZ.2017.2786244
  • [5] Meda-Campaña JA, Rubio JDJ, Aguilar-Ibañez C, Tapia-Herrera R, Gonzalez-Salazar R et al. General controllability and observability tests for Takagi-Sugeno fuzzy systems. Evolving Systems 2019; 2019: 1-10. doi: 10.1007/s12530- 019-09281-w
  • [6] Meda-Campana JA, Gomez-Mancilla JC, Castillo-Toledo B. Exact output regulation for nonlinear systems described by Takagi-Sugeno fuzzy models. IEEE Transactions on Fuzzy Systems 2012; 20 (2): 235-247. doi: 10.1109/TFUZZ.2011.2172689
  • [7] Tapia-Herrera R, Meda-Campaña JA, Alcántara-Montes S, Hernández-Cortés T, Salgado-Conrado L. Tuning of a TS fuzzy output regulator using the steepest descent approach and ANFIS. Mathematical Problems in Engineering 2013; 2013: 1-14. doi:10.1155/2013/873430
  • [8] Hernández-Cortés T, Meda Campaña JA, Páramo Carranza LA, Gómez Mancilla JC. A simplified output regulator for a class of Takagi-Sugeno fuzzy models. Mathematical Problems in Engineering 2015; 2015: 1-18. doi:10.1155/2015/148173
  • [9] Hernández Cortés T, Curtidor López AV, Rodríguez Valdez J, Meda Campaña JA, Tapia Herrera R et al. Synchronization of discrete-time chaotic fuzzy systems by means of fuzzy output regulation using genetic algorithm. Mathematical Problems in Engineering 2015; 2015: 1-18. doi:10.1155/2015/198371
  • [10] Petras I. Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation. Berlin, Germany: Higher Education Press, 2011.
  • [11] Herrmann R. Fractional Calculus. An Introduction for Physicists. GigaHedron, Germany: World Scientific, 2014.
  • [12] Pacheco C, Duarte-Mermoud MA, Aguila-Camacho N, Castro-Linares R. Fractional-order state observer for integerorder linear systems. Journal of Applied Nonlinear Dynamics 2017; 6 (2): 251-264.
  • [13] Liu H, Pan Y, Li S, Chen Y. Adaptive fuzzy backstepping control of fractional-order nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems 2017; 47 (8): 2209-2217.
  • [14] Matignon D. Stability results for fractional differential equations with applications to control processing. Computational Engineering in Systems Applications 1996; 1996: 963-968.
  • [15] Bandyopadhyay B, Kamal S. Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach. Switzerland: Springer International Publishing, 2015.
  • [16] Monje CA, Chen Y, Vinagre BM, Xue D, Feliu V. Fractional-order Systems and Controls. Fundamentals and Applications. London, UK: Springer-Verlag, 2010.
  • [17] Duarte-Ortigueira M. Fractional Calculus for Scientists and Engineers. New York, NY, USA: Springer, 2010.
  • [18] Oldham KB, Spanier J. Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. New York, NY, USA: Academic Press, 1974.