Offline tuning mechanism of joint angular controller for lower-limb exoskeleton with adaptive biogeographical-based optimization

Offline tuning mechanism of joint angular controller for lower-limb exoskeleton with adaptive biogeographical-based optimization

Designing an accurate controller to overcome the nonlinearity of dynamic systems is a technical matter in control engineering, particularly for tuning the parameters of the controller precisely. In this paper, a tuning mechanism for a proportional-integral-derivative (PID) controller of lower limb exoskeleton (LLE) joints by adaptive biogeographical based-optimization (ABBO) is presented. The tuning of the controller is defined as an optimization problem and solved by ABBO, which is an iterative algorithm inspired by a blending crossover operator (BLX-α). The parameters of the migration change proportionally to the growth of iteration that conveys the error to rapid convergence by narrowing the searching space. The Lyapunov stability theory is proven for LLE nonlinear dynamic systems. ABBO algorithm is compared with other conventional optimization methods in step response, which guaranteed it was not trapped in local optima and demonstrated the lowest average error and the fastest convergence rate. The tuned controller is applied in a closed-loop system to verify its performance in the prototype. The experimental results of ABBO with PID controller ascertained that the proposed tuning mechanism is applicable in the LLE gait training.

___

  • [1] Aliman N, Ramli R, Haris SM. Design and development of lower limb exoskeletons: A survey. Robotics and Autonomous Systems 2017; 95: 102-116. doi:10.1016/j.robot.2017.05.013
  • [2] Young A, Ferris D. State-of-the-art and future directions for robotic lower limb robotic exoskeletons. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2017; 25(2): 171-182. doi: 10.1109/TNSRE.2016.2521160
  • [3] Eguchi Y, Kadone H, Suzuki K. Standing Mobility Device with Passive Lower Limb Exoskeleton for Upright Locomotion. IEEE/ASME Transactions on Mechatronics 2018; 23 (4): 1608-1618. doi: 10.1109/TMECH.2018.2799865
  • [4] Zhang R, Wang Q, Li K, He S, Qin S et al. A BCI-based environmental control system for patients with severe spinal cord injuries. IEEE Transactions on Biomedical Engineering 2017; 64 (8): 1959-1971. doi: 10.1109/TBME.2016.2628861
  • [5] Spiess MR, Steenbrink F, Esquenazi A. Getting the Best Out of Advanced Rehabilitation Technology for the Lower Limbs: Minding Motor Learning Principles. Physical Medicine & Rehabilitation 2018; 10 (9):165-173. doi: 10.1016/j.pmrj.2018.06.007
  • [6] Kim KJ, Kim KH . Progressive treadmill cognitive dual-task gait training on the gait ability in patients with chronic stroke. Journal of Exercise Rehabilitation 2018; 14 (5): 821-828. doi: 10.12965/jer.1836370.185
  • [7] Florez JM, Shah M, Moraud EM, Wurth S, Baud L et al. Rehabilitative soft exoskeleton for rodents. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2017; 25 (2): 107-118. doi: 10.1016/j.pmr.2018.12.012
  • [8] Esquenazi A, Talaty M, Jayaraman A. Powered exoskeletons for walking assistance in persons with central nervous system injuries: A narrative review. Physical Medicine & Rehabilitation 2017; 9 (1): 6-62. doi: 10.1016/j.pmrj.2016.07.534
  • [9] Zhang T, Tran M, Huang H. Nrel-exo: A 4-DoFs wearable hip exoskeleton for walking and balance assistance in locomotion. IEEE/RSJ International Conference on Intelligent Robots and Systems; Vancouver, BC, Canada; 2017. pp. 508-513. doi: 10.1109/IROS.2017.8202201
  • [10] Huang R, Peng Z, Cheng H, Hu J, Qiu J et al. Learning-based walking assistance control strategy for a lower limb exoskeleton with hemiplegia patients. IEEE International Conference on Intelligent Robots and Systems; Madrid, Spain; 2018. pp. 2280-2285. doi: 10.1109/IROS.2018.8594464
  • [11] Yang Y, Huang D, Dong X. Enhanced Neural Network Control of Lower Limb Rehabilitation Exoskeleton by Add-on Repetitive Learning. Neurocomputing 2018; 323 (6): 256-265. doi: 10.1016/j.neucom.2018.09.085
  • [12] He W, Ge SS, Li Y, Chew E, Ng YS. Neural network control of a rehabilitation robot by state and output feedback. Journal of Intelligent & Robotic Systems 2015; 80 (1): 15–31. doi:10.1007/s10846-014-0150-6
  • [13] Shan H, Jiang C , Mao Y, Wang X. Design and control of a wearable active knee orthosis for walking assistance. IEEE 14th International Workshop on Advanced Motion Control, AMC; Auckland, New Zealand; 2016. pp. 51-56. doi: 10.1109/AMC.2016.7496327
  • [14] Zhang Q, Zhang X,Yin G,Yang K, Xie J et al. Design on subsection based mix position controller for lower limb rehabilitation robot. 14th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI: Jeju, Korea (South); 2017. pp. 720-724. doi: 10.1109/URAI.2017.7992809
  • [15] Li Z, Dong W, Wang L, Wang CCJ, Du Z. Lower limb exoskeleton hybrid phase control based on fuzzy gain sliding mode controller. 2nd International Conference on Robotics and Automation Sciences, ICRAS; Wuhan, China; 2018. pp. 184-190. doi: 10.1109/ICRAS.2018.8442396
  • [16] Simon D. Biogeography-based optimization. IEEE Transactions on Evolutionary Computation 2008; 12(6): 702-713. doi: 10.1109/TEVC.2008.919004
  • [17] Chena X, Tianfieldb H, Duc W, Liua G. Biogeography-based optimization with covariance matrix based migration. Applied Soft Computing Journal 2016; 71-85. doi: 10.1016/j.asoc.2016.04.022
  • [18] Paslar S, Ariffin MK, Tamjidy M, Hong TS. Biogeography-based optimisation for flexible manufacturing system scheduling problem. International Journal of Production Research 2014; 53 (9): 2690-2706. doi: 10.1080/00207543.2014.975855
  • [19] Wen S, Chen J, Li Y, Shi D, Duan X. Enhancing the performance of biogeography-based optimization using multitopology and quantitative orthogonal learning. Mathematical Problems in Engineering 2017. doi: 10.1155/2017/2314927
  • [20] Garg H. An efficient biogeography based optimization algorithm for solving reliability optimization problems. Mathematical Problems in Engineering 2015; 24: 1-10. doi: 10.1016/j.swevo.2015.05.001
  • [21] Reihanian A, Feizi-Derakhshi MR, Aghdasi HS. NBBO: A new variant of biogeography-based optimization with a novel framework and a two-phase migration operator. Information Sciences 2019; 504: 178-201. doi: 10.1016/j.ins.2019.07.054
  • [22] Misaghi M, Yaghoobi M. Improved invasive weed optimization algorithm (IWO) based on chaos theory for optimal design of PID controller. Journal of Computational Design and Engineering 2019; 6 (3): 284-295. doi: 10.1016/j.jcde.2019.01.001
  • [23] Pal D, Chatterjee A, Rakshit A. Robust-stable quadratic-optimal fuzzy-PDC controllers for systems with parametric uncertainties: A PSO based approach. Engineering Applications of Artificial Intelligence 2018; 70: 38-51. doi: 10.1016/j.engappai.2018.01.003
  • [24] Wang C, Fang H, He S. Adaptive optimal controller design for a class of LDI-based neural network systems with input time-delays. Neurocomputing 2020; 385: 292-299. doi: 10.1016/j.neucom.2019.12.084
  • [25] Han S, Haoping W, Yang T. Model-free based adaptive nonsingular fast terminal sliding mode control with timedelay estimation for a 12 DOF multi-functional lower limb exoskeleton. Advances in Engineering Software 2018; 119: 38 -42. doi: 10.1016/j.advengsoft.2018.01.004
  • [26] Li Z, Zhao K, Zhang L, Wu X, Zhang T et al. Human-in-the-Loop Control of a Wearable Lower Limb Exoskeleton for Stable Dynamic Walking. IEEE/ASME Transactions on Mechatronics 2021;26 (5): 2700-2711. doi: 10.1109/TMECH.2020.3044289
  • [27] Sun W, Lin JW, Su SF, Wang N, Er MJ. Reduced Adaptive Fuzzy Decoupling Control for Lower Limb Exoskeleton. IEEE Transactions on Cybernetics 2021; 51 (3): 1099–1109. doi: 10.1109/TCYB.2020.2972582
  • [28] Belkadi A, Oulhadj H, Touati Y, Khan AS, Daachi B. On the robust PID adaptive controller for exoskeletons: A particle swarm optimization based approach. Applied Soft Computing Journal 2017; 60: 87-100. doi: 10.1016/j.asoc.2017.06.012
  • [29] Sharma R, Gaur P, Bhatt S, Joshi D. Optimal fuzzy logic-based control strategy for lower limb rehabilitation exoskeleton. Applied Soft Computing 2021; 105: 107226. doi: 10.1016/j.asoc.2021.107226
  • [30] Aliman N, Ramli R, Haris SM, Amiri MS, Van M. A robust adaptive-fuzzy-proportional-derivative controller for a rehabilitation lower limb exoskeleton”. Engineering Science and Technology, an International Journal 2022; 35: 101097. doi: 10.1016/j.jestch.2022.101097
  • [31] Amiri MS, Ramli R, Tarmizi MAA, Ibrahim MF, Narooei KD. Simulation and Control of a Six Degree of Freedom Lower limb Exoskeleton. Jurnal Kejuruteraan 2020; 32 (2): 197–204. doi: 10.17576/jkukm-2020-32(2)-03
  • [32] Amiri MS, Ramli R, Ibrahim MF. Hybrid design of PID controller for four DoF lower limb exoskeleton. Applied Mathematical Modelling 2019; 72: 17–27. doi: 10.1016/j.apm.2019.03.002
  • [33] Xinyi Z, Haoping W, Yang T, Zefeng W, Laurent P. Modeling, simulation and control of human lower extremity exoskeleton. 34th Chinese Control Conference (CCC); Hangzhou, China ; 2015. pp. 6066–6071. doi: 10.1109/ChiCC.2015.7260588
  • [34] Amiri MS, Ibrahim MF, Ramli R. Optimal parameter estimation for a dc motor using genetic algorithm. International Journal of Power Electronics and Drive System (IJPEDS) 2020; 11 (2): 1047–1054. doi: 10.11591/ijpeds.v11.i2.pp1047-1054 2020.
  • [35] Dorf RC, Robert R. Modern Control Systems, 13th ed, Pearson Education, Inc., 2017.
  • [36] Amiri MS, Ramli R, Ibrahim MF. Initialized model reference adaptive control for lower limb exoskeleton. IEEE Access 2020; 7: 167210-167220. doi: 10.1109/ACCESS.2019.2954110
  • [37] Amiri M S, Ramli R, Ibrahim MF. Genetically optimized parameter estimation of mathematical model for multijoints hip–knee exoskeleton. Robotics and AutonomousSystems 2020; 125: 103425. doi: 10.1016/j.robot.2020.103425
  • [38] Castillo-Zamora JJ, Camarillo-Gomez KA, Perez-Soto GI, Rodriguez-Resendiz J. Comparison of PD, PID and sliding-mode positioncontrollers for v-tail quadcopter stability. IEEE Access 2018; 6:38086–38096. doi: 10.1109/ACCESS.2018.2851223
  • [39] Amiri M S, Ramli R, Ibrahim MF, Wahab DA, Aliman N. Adaptive Particle Swarm Optimization of PID Gain Tuning for Lower-Limb Human Exoskeleton in Virtual Environment. Mathematics 2020; 8 (11): 2040. doi: 10.3390/math8112040
  • [40] Hagglund T. Signal filtering in pid control. IFAC Proceedings Volumes 2012; 2 (1): 1–10. doi: 10.3182/20120328- 3-it-3014.00002
  • [41] Amiri MS, Ramli R. Intelligent trajectory tracking behavior of a multi-joint robotic arm via genetic–swarm optimization for the inverse kinematic solution. Sensors 2021; 21 (9): 3171. doi: 10.3390/s21093171
  • [42] Sadeghi J, Niaki STA. Two parameter tuned multi-objective evolutionary algorithms for a bi-objective vendor managed inventory modelwith trapezoidal fuzzy demand. Applied Soft Computing Journal 2015; 30: 567–576. doi: 10.1016/j.asoc.2015.02.013
  • [43] Candan G, Yazgan HR. Genetic algorithm parameter optimisation using taguchi method for a flexible manufacturing system scheduling problem. International Journal of Production Research 2014; 53 (3): 897–915. doi: 10.1080/00207543.2014.939244
  • [44] Niu Q, Zhang H, Wang X, Li K, Irwin GW. A hybrid harmony search with arithmetic crossover operation for economic dispatch. International Journal of Electrical Power and Energy Systems 2014; 62: 237–257. doi: 10.1016/j.ijepes.2014.04.031
  • [45] Ghosh A, Das S, Mullick SS, Mallipeddi R, Das AK.A switched parameter differential evolution with optional blending crossover for scalable numerical optimization. Applied Soft Computing Journal 2017; 57: 329–352. doi: 10.1016/j.asoc.2017.03.003
  • [46] Sumathi S, Paneerselvam S. Computational Intelligence Paradigms Theory and Applications, CRC Press, 2010
  • [47] Li X, Yang X. Stability analysis for nonlinear systems with state-dependent state delay. Automatica 2020; 112: 108674. doi: 10.1016/j.automatica.2019.108674
  • [48] Liu S, Liberzon D, Zharnitsky V. Almost Lyapunov functions for nonlinear systems. Automatica 2020; 113: 108758. doi: 10.1016/j.automatica.2019.108758
  • [49] Afaque Khan MA, Swamy MN. Modified MRAC based on Lyapunov theory for improved controller efficiency. International Conference on Automatic Control and Dynamic Optimization Techniques; Pune, India; 2017. pp. 989–995. doi: 10.1109/ICACDOT.2016.7877735
  • [50] Valluru SK, Singh M. Performance investigations of APSO tuned linear and nonlinear PID controllers for a nonlinear dynamical system. Journal of Electrical Systems and Information Technology 2018; 5 (3): 442–452. doi: 10.1016/j.jesit.2018.02.001
  • [51] Akhil VM, Ashmi M, Rajendrakumar PK, Sivanandan KS. Human gait recognition using hip, knee and ankle joint ratios. IRBM 2019; 41 (3): 133-140. doi: 10.1016/j.irbm.2019.11.001
  • [52] Wu J, Gao J, Song R, Li R, Li Y et al. The design and control of a 3DOF lower limb rehabilitation robot. Mechatronics 2016; 33: 13-22. doi: 10.1016/j.mechatronics.2015.11.010
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Missing samples reconstruction using an efficient and robust instantaneous frequency estimation algorithm

Sadiq Ali, Nabeel Ali Khan

Classification and phenological staging of crops from in situ image sequences by deep learning

Uluğ BAYAZIT, Turgay ALTILAR, Nilgün GÜLER BAYAZIT

A novel crimping technique approach for high power white good plugs

Ömer BOSTAN, Ömer Cihan KIVANÇ, Okan ÖZGÖNENEL, Şahin GÜZEL, Mert DEMİRSOY

Learning target class eigen subspace (LTC-ES) via eigen knowledge grid

Sanjay Kumar Sonbhadra, Sonali Agarwal, P. Nagabhushan

Priority enabled content based forwarding in fog computing via SDN

Mehmet Demirci, Metehan Güzel, Suat Özdemir, Feyza Yıldırım Okay, Yasin İnağ

Anomaly detection in rotating machinery using autoencoders based on bidirectional LSTM and GRU neural networks

Dhiren Kumar Behera, Rabinarayan Sethi, Krishna Chandra Patra

Stochastic day-ahead optimal scheduling of multimicrogrids: an alternating direction method of multipliers (ADMM) approach

Amin Safari, Hossein Nasiraghdam

Binary flower pollination algorithm based user scheduling for multiuser MIMO systems

Prabina Pattanayak, Arnab Nandi, Krishna Lal Baishnab, Fazal Ahmed Talukdar, Jyoti Mohanty

A novel deep reinforcement learning based stock price prediction using knowledge graph and community aware sentiments

Zeynep Hilal KİLİMCİ, Anıl Berk ALTUNER

A new effective denoising filter for high density impulse noise reduction

Caner ÖZCAN, Iman ELAWADY