Estimation of mode shape in power systems under ambient conditions using advanced signal processing approach

Estimation of mode shape in power systems under ambient conditions using advanced signal processing approach

This paper presents a dynamic approach for the monitoring and estimation of electromechanical oscillatory modes in the power system in real time with less computational burden. Extensive implementation of phasor measurement units (PMU) and the utilization of advanced signal processing techniques help in identifying the dynamic behaviors of oscillatory modes. Conventional nonstationary analysis techniques are computationally weak to handle a larger quantity of data in real-time. This research utilizes the variational mode decomposition (VMD) for signal decomposition, which is highly tolerant to noise and computationally more robust. The predefined parameters of the VMD process are assigned using FFT analysis of the signal. The significant decomposed mode resembling the original signal is determined using the correlation coefficient method and used for low-frequency mode estimation. The spectral analysis techniques are used to determine the instantaneous mode shapes, which help to identify the source of oscillation in the power system network. The proposed methodology has been tested using signals obtained from two area Kundur system and actual PMU data recorded from Power System Operation Corporation (POSOCO) Limited of the Indian Power grid. The results confirm the superior viability and adaptability of the proposed approach. The performance comparison with other existing signal processing techniques used to estimate low-frequency modes is also presented to illustrate the effectiveness of the proposed method.

___

  • [1] Graham Rogers. Power System Oscillations.Springer US,2000. doi: 10.1007/978-1-4615-4561-3
  • [2] Gautam D, Vittal V, Harbour T. Impact of Increased Penetration of DFIG based Wind Turbine Generators on Transient and Small Signal Stability of Power Systems. IEEE Transactions on Power Systems 2009; 24 (3): 1426- 1434. doi:10.1109/TPWRS.2009.2021234
  • [3] Kundur P. Power system stability and control. Twelfth reprint, New Delhi, India: Tata McGraw-Hill Education Pvt. Ltd,2011.
  • [4] Papia Ray. Power system low frequency oscillation mode estimation using wide area measurement systems. Engineering science and technology an international journal 2017; 20 (2): 598-615. doi:10.1016/j.jestch.2016.11.019
  • [5] Bin WANG, Kai SUN. Location methods of oscillation sources in power systems: a survey. Journal of Modern Power System and Clean Energy 2017; 5 (2): 151–159. doi:10.1007/s40565-016-0216-5
  • [6] Shim KS, Nam HK,Lim YC. Use of Prony analysis to extract sync information of low frequency oscillation from measured data. European Transactions on Electrical Power 2011;21 (5):1746-1762. doi:10.1002/etep.531
  • [7] Liu G, Quintero J, Mani Venkatasubramanian V. Oscillation Monitoring System Based on Wide Area Synchrophasors in Power Systems. In: IREP Symposium- Bulk Power System Dynamics and Control - VII, Revitalizing Operational Reliability, Charleston, SC, USA, 2007. doi:10.1109/IREP.2007.4410548
  • [8] Almunif A, Fan L, Miao Z. A tutorial on data-driven eigenvalue identification: Prony analysis, matrix pencil and Eigen system realization algorithm. International Transaction of Electrical Energy Systems 2020; 30 (4): e12283. doi:10.1002/2050-7038.12283
  • [9] Sarkar TK, Pereira O. Using the matrix pencil method to estimate the parameters of a sum of complex exponentials. IEEE Antennas and Propagation Magazine 1995; 37 (1): 48-55. doi:10.1109/74.370583
  • [10] Smith JR, Fatehi F, Woods CS, Hauer JF et al. Transfer function identification in power system applications. IEEE Transactions on Power System 1993; 8 (3):1282-1290. doi:10.1109/59.260866
  • [11] Zhou N, Dosiek L,Trudnowski D, Pierre JW. Electromechanical mode shape estimation based on transfer function identification using PMU measurements. In: Proceedings of IEEE PES General Meeting, Calgary, AB, Canada, 2009.pp.1-7. doi:10.1109/PES.2009.5275924
  • [12] Nezam Sarmadi SA, Venkatasubramanian V. Electromechanical Mode Estimation Using Recursive Adaptive Stochastic Subspace Identification. IEEE Transactions on Power Systems 2014; 29 (1):349-358. doi:10.1109/TPWRS.2013.2281004
  • [13] Jiang T, Yuan H, Jia H, Zhou N et al. Stochastic subspace identification-based approach for tracking inter-area oscillatory modes in bulk power system utilizing synchrophasor measurements. IET Generation Transmission and Distribution 2015; 9(15):2409–2418. doi:10.1049/iet-gtd.2015.0184
  • [14] Philip G, Jain T. An improved Stochastic Subspace Identification based estimation of low frequency modes in power system using synchrophasors. Electrical Power and Energy Systems 2019;109:495-503. doi:10.1016/j.ijepes.2019.01.030
  • [15] Dosiek L, Zhou N, John W. Pierre, Huang Z et al. Mode Shape Estimation Algorithms Under Ambient Conditions: A Comparative Review. IEEE Transactions on Power Systems 2013; 28 (2): 779-787. doi:10.1109/TPWRS.2012.2210570
  • [16] J.Sanchez-Gasca, D.Trudnowski. Identification of electromechanical modes in power system. IEEE Task Force on Identification of Electromechanical Modes of the Power System Stability, Power and Energy Society Tech.rep,2012.
  • [17] Messina AR. Inter-area oscillations in power systems: A nonlinear and nonstationary perspective. Springer, 2009. doi:10.1007/978-0-387-89530-7
  • [18] Prince A, Senroy N, Balasubramanian R. Targeted approach to apply masking signal-based empirical mode decomposition for mode identification from dynamic power system wide area measurement signal data. IET Generation Transmission and Distribution 2011;5(10):1025–1032. doi:10.1049/iet-gtd.2011.0057
  • [19] Jin T, Liu S, Rodolfo CC, Su W. A method for the identification of low frequency oscillation modes in power systems subjected to noise. Applied Energy 2017;206:1379-1392. doi:10.1016/j.apenergy.2017.09.123
  • [20] Shir F, Ivatloo M. Identification of inter-area oscillations using wavelet transform and phasor measurement unit data. International Transactions on Electrical Energy Systems 2015; 25 (11):2831–2846. doi:10.1002/etep.1994
  • [21] Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Transaction on Signal Processing 2014; 62 (3):531-544. doi:10.1109/TSP.2013.2288675
  • [22] Jena MK, Samantaray SR, Panigrahi BK. Variational mode decomposition-based power system disturbance assessment to enhance WA situational awareness and post-mortem analysis. IET Generation Transmission and Distribution 2017; 11 (13):3287-3298. doi:10.1049/iet-gtd.2016.1827
  • [23] Xiao H, Shandong J, Wei J, Liu H, Qingquan Li et al. Identification method for power system low-frequency oscillations based on improved VMD and Teager–Kaiser energy operator. IET Generation Transmission and Distribution 2017; 11 (16):4096-4103. doi:10.1049/iet-gtd.2017.0577
  • [24] Mario R. Arrieta Paterninaa, Rajesh Kumar Tripathy, Alejandro Zamora-Mendez, Daniel Dotta. Identification of electromechanical oscillatory modes based on variational mode decomposition. Electric Power Systems Research 2019;167:71-85. doi:10.1016/j.epsr.2018.10.014
  • [25] Kumar L, Kishor N. Determination of mode shapes in PMU signals using two-stage mode decomposition and spectral analysis. IET Generation Transmission and Distribution 2017; 1 (18): 4422-4429. doi:10.1049/iet-gtd.2017.0316
  • [26] Kumar L, Kishor N. Wide area monitoring of sustained oscillations using double‐stage mode decomposition. International Transactions on Electrical Energy Systems 2018; 28 (6):e2553. doi: 10.1002/etep.2553
  • [27] Zuhaib M, Rihan MT. A novel method for locating the source of sustained oscillation in power system using synchrophasors data. Protection and Control of Modern Power System 2020; 30 (5):1-12. doi:10.1186/s41601-020- 00178-4
  • [28] Kewei C, Belema P, Cao W, Liu Z, Wang Z et al. Hybrid Approach for Detecting and Classifying Power Quality Disturbances Based on the Variational Mode Decomposition and Deep Stochastic Configuration Network. Energies 2018;11 (11): 3040. doi:10.3390/en11113040
  • [29] Yang W, Jia L, Xu Y. Extreme learning machine based short-term wind power prediction framework with adaptive variational mode decomposition. Power System and Green Energy Conference (PSGEC), 2021: 395-399 doi: 10.1109/PSGEC51302.2021.9542071
  • [30] Rahul S, Sunitha R. Dominant Electromechanical Oscillation Mode Identification using Modified Variational Mode Decomposition. Arabian Journal for Science and Engineering 2021;46 (10):10007–10021. doi:10.1007/s13369-021- 05818-x
  • [31] Petre S, Randolph M. Spectral analysis of signals. Prentice Hall, Inc. Upper Saddle River, New Jersey 07458,2005.
  • [32] Lu C, Yan S, Lin Z. A Unified Alternating Direction Method of Multipliers by Majorization Minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence 2018; 40(3):527-541. doi:10.1109/TPAMI.2017.2689021
  • [33] Rahul S, Koshy S, Sunitha R. Electromechanical Mode Estimation in Power System Using a Novel Nonstationary Approach. In: Haes Alhelou H, Abdelaziz A.Y, Siano P.(editor) Wide Area Power Systems Stability, Protection, and Security. Springer, cham, 2020: 251-269. doi:10.1007/978-3-030-54275-78
  • [34] Vanfretti L, Bengtsson S, Gjerde JO. Preprocessing synchronized phasor measurement data for spectral analysis of electromechanical oscillations in the Nordic Grid. International Transactions on Electrical Energy Systems 2015; 25 (2): 348–358. doi:10.1002/etep.1847
  • [35] Report on power system oscillations experienced in Indian Grid on 9th, 10th,11th and 12th August Task Force Report, Power System Operation Corporation Limited, New Delhi, 2014.
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Interval observer-based supervision of nonlinear networked control systems

Afef Najjar, Messaoud Amairi, Thach Ngoc Dinh, Tarek Raissi

Binary flower pollination algorithm based user scheduling for multiuser MIMO systems

Prabina Pattanayak, Arnab Nandi, Krishna Lal Baishnab, Fazal Ahmed Talukdar, Jyoti Mohanty

Lightweight distributed computing framework for orchestrating high performance computing and big data

Muhammed Numan İNCE, Joseph LEDET, Melih GÜNAY

An efficient end-to-end deep neural network for interstitial lung disease recognition and classification

Ikhtiar Ahmed, Md Baharul Islam, Masum Shah Junayed, Afsana Ahsan Jeny, AFM Shahen Shah

BLMDP: A new bi-level Markov decision process approach to joint bidding and task-scheduling in cloud spot market

Mehdi Dehghan Takht Fooladi, Mona Naghdehforoushh, Mohammad Hossein Rezvani, Mohammad Mehdi Gilanian Sadeghi

Development of a control algorithm and conditioning monitoring for peak load balancing in smart grids with battery energy storage system

İbrahim ŞENGÖR, Sezai TAŞKIN, Turhan ATICI, Macit TOZAK, Osman DEMİRCİ

Missing samples reconstruction using an efficient and robust instantaneous frequency estimation algorithm

Sadiq Ali, Nabeel Ali Khan

Twitter account classification using account metadata: organization vs. individual

Yusuf Mücahit ÇETİNKAYA, Mesut GÜRLEK, İsmail Hakkı TOROSLU, Pınar KARAGÖZ

A Comprehensive Survey for Non-Intrusive Load Monitoring

Eray YILDIZ, Efe İsa TEZDE

A novel fault detection approach based on multilinear sparse PCA: application on the semiconductor manufacturing processes

Riadh TOUMI, Yahia KOURD, Dimitri LEFEBVRE