New static output feedback stabilization and multivariable PID-controller design methods for unstable linear systems via an ILMI optimization approach

New static output feedback stabilization and multivariable PID-controller design methods for unstable linear systems via an ILMI optimization approach

The design problem of a static output feedback controller and multivariable proportional-integral-derivative (PID) controller is investigated for linear time-invariant systems (LTI). First, the static output feedback stabilization problem is taken into consideration and then an iterative linear matrix inequality (ILMI) algorithm is developed for the synthesis of the controller. Second, choosing a multivariable PID control law, the whole system is transformed into a new augmented system represented in the form of a static output feedback control system. This method allows us to convert the multivariable PID controller design problem into a static output feedback synthesis problem. Thus, the proposed ILMI algorithm can as well be utilized for the design of the multivariable PID controller. Two numerical examples are presented to illustrate a practical application of the developed methodologies.

___

  • [1] Gu G. Stabilizability conditions of multivariable uncertain systems via output feedback control. IEEE T Automat Contr 1990; 35: 925-927.
  • [2] Tro no-Neta A, Kucera V. Stabilization via static output feedback. IEEE T Automat Contr 1993; 38: 764-765.
  • [3] Syrmos VL, Abdallah CT, Dorato P, Grigoriadis K. Static output feedback-a survey. Automatica 1997; 33: 125-137.
  • [4] Cao YY, Lam J, Sun YX. Static output feedback stabilization: An ILMI approach. Automatica 1998; 34: 1641-1645.
  • [5] Geromel JC, de Souza CC, Skelton RE. Static output feedback controllers: stability and convexity. IEEE T Automat Contr 1998; 43: 764-765.
  • [6] Cao YY, Sun YX, Mao WJ. A new necessary and sufficient condition for static output feedback stabilizability and comments on `Stabilization via static output feedback'. IEEE T Automat Contr 1998; 43: 1110-1111.
  • [7] Cao YY, Sun YX, Lam J. Simultaneous stabilization via static output feedback and state feedback. IEEE T Automat Contr 1999; 44: 1277-1282.
  • [8] Crusius CAR, Tro no A. Sufficient LMI conditions for output feedback control problems. IEEE T Automat Contr 1999; 44: 1053-1057.
  • [9] Wang Z, Burnham KJ. LMI approach to output feedback control for linear uncertain systems with D-stability constraints. J Optimiz Theory App 2002; 113: 353-372.
  • [10] Zheng F, Wang QG, Lee TH. On the design of multivariable PID controllers via LMI approach. Automatica 2002; 38: 517-526.
  • [11] Yu JT. A convergent algorithm for computing stabilizing static output feedback gains. IEEE T Automat Contr 2004; 49: 2271-2275.
  • [12] Fujimori A. Optimization of static output feedback using substitutive LMI formulation. IEEE T Automat Contr 2004; 49: 995-999.
  • [13] Lin C, Wang QG, Lee TH. An improvement on multivariable PID controller design via iterative LMI approach. Automatica 2004; 40: 519-525.
  • [14] He Y, Wang QJ. An improved ILMI method for static output feedback control with application to multivariable PID control. IEEE T Automat Contr 2006; 51: 1678-1683.
  • [15] Yoo DS, Chung MS. Performance improvement of output feedback control systems using the theory of variable structure systems. Electron Lett 1990; 26: 1210-1211.
  • [16] Wang C, Huang T. Static output feedback control for positive linear continuous-time systems. Int J Robust Nonlin 2013; 14: 1537-1544.
  • [17] Dong J, Yang GH. Robust static output feedback control synthesis for linear continuous systems with polytopic uncertainties. Automatica 2013; 49: 1821-1829.
  • [18] Safonov MG, Laub AJ, Hartmann G. Feedback properties of multivariable systems: The role and use of return difference matrix. IEEE T Automat Contr 1981; 51: 415-422.