New hyperchaotic system with single nonlinearity, its electronic circuit and encryption design based on current conveyor

New hyperchaotic system with single nonlinearity, its electronic circuit and encryption design based on current conveyor

Nowadays, hyperchaotic system (HCSs) have been started to be used in engineering applications because they have complex dynamics, randomness, and high sensitivity. For this purpose, HCSs with different features have been introduced in the literature. In this work, a new HCS with a single discontinuous nonlinearity is introduced and analyzed. The proposed system has one saddle focus equilibrium. When the dynamic properties and bifurcation graphics of the system are analyzed, it is determined that the proposed system exhibits the complex phenomenon of multistability. Moreover, analog electronic circuit design of the proposed system is performed with positive second-generation current conveyor. In addition, an encryption circuit is designed to demonstrate that the proposed system can be used in various engineering applications.

___

  • [1] Rossler OE. An equation for hyperchaos. Physics Letters A 1979; 71: 155-157. doi: 10.1016/0375-9601(79)90150-6
  • [2] Zhang B, Li H. A new four-dimensional autonomous hyperchaotic system and the synchronization of different chaotic systems by using fast terminal sliding mode control. Mathematical Problems in Engineering 2013. 2013: 179428. doi: 10.1155/2013/179428
  • [3] Khorashadizadeh S, Majdi MH. Synchronization of two different chaotic systems using Legendre polynomials with applications in secure communications. Frontiers of Information Technology & Electronic Engineering 2018; 19 (9): 1180-1190. doi: 10.1631/FITEE.1601814
  • [4] Mishkovski I, Kocarev L. Chaos-based public-key cryptography. In: Kocare L, Lian S (editors). Chaos-Based Cryptography: Theory, Algorithms and Applications. Heidelberg, Germany: Springer, 2011, pp. 27-30.
  • [5] Mèndez-Ramìrez R, Arellano-Delgado A, Cruz-Hernàndez C, Abundiz-Pèrez F, Martìnez-Clark R. Chaotic digital cryptosystem using serial peripheral interface protocol and its dsPIC implementation. Frontiers of Information Technology & Electronic Engineering 2018; 19 (2): 165-179. doi: 10.1631/FITEE.1601346
  • [6] Rostami MJ, Shahba A, Saryazdi S, Nezamabadi-pour H. A novel parallel image encryption with chaotic windows based on logistic map. Computers & Electrical Engineering 2017; 62: 384-400. doi: 10.1016/j.compeleceng.2017.04.004
  • [7] Kuiate GF, Rajagopal K, Kingni ST, Tamba VK, Jafari S. Autonomous Van der Pol-Duffing snap oscillator: analysis, synchronization and applications to real-time image encryption. International Journal of Dynamics and Control 2018; 19 (2): 1008-1022. doi: 10.1007/s40435-017-0373-z
  • [8] Rajagopal K, Laarem G, Vaidyanathan S, Karthikeyan A, Srinivasan AK. Dynamical analysis and FPGA implementation of a novel hyperchaotic system and its synchronization using adaptive sliding mode control and genetically optimized PID control. Mathematical Problems in Engineering 2017; 2017: 7307452. doi: 10.1155/2017/7307452
  • [9] Daltzis P, Vaidyanayhan S, Pham VT, Volos C, Nistazakis E et al. Hyperchaotic attractor in a novel hyperjerk system with two nonlinearities. Circuits, Systems and Signal Processing 2018; 37 (2): 613-635. doi: 10.1007/s00034- 017-0581-y
  • [10] Hamdi B, Hassenr S. A new hypersensitive hyperchaotic system equilibria. International Journal of Bifurcation and Chaos 2017; 27 (5): 1750064. doi: 10.1142/S021812741750064X
  • [11] Hoang DV, Kingni ST, Pham VT. A no-equilibrium hyperchaotic system and its fractional-order form. Mathematical Problems in Engineering 2017; 2017: 3927184. doi: 10.1155/2017/3927184
  • [12] Rajagopa K, Karthikeyan A, Duraisamy P. Hyperchaotic Chameleon: fractional order FPGA implementation. Complexity 2017; 2017: 8979408. doi: 10.1155/2017/8979408
  • [13] Lassoued A, Boubaker O. Dynamic analysis and circuit design of a novel hyperchaotic system with fractional-order terms. Complexity 2017; 2017: 3273408. doi: 10.1155/2017/3273408
  • [14] Yang Q, Bai M. A new 5D hyperchaotic system based on modified generalized Lorenz system. Nonlinear Dynamics 2017; 88 (1): 189-221. doi: 10.1007/s11071-016-3238-7
  • [15] Luo X, Wang C, Wan Z. Grid multi-wing butterfly chaotic attractors generated from a new 3-D quadratic autonomous system. Nonlinear Analysis: Modelling and Control 2014; 19 (2): 272-285. doi: 10.15388/NA.2014.2.9
  • [16] Chithra A, Mohammed IR, Rizwana R. Observation of chaotic and strange nonchaotic attractors in a simple multiscroll system. Journal of Computational Electronics 2018; 17 (1): 51-60. doi: 10.1007/s10825-017-1104-6
  • [17] Pehlivan İ, Uyaroğlu Y. A new chaotic attractor from general Lorenz system family and its electronic experimental implementation. Turkish Journal of Electrical Engineering & Computer Sciences 2010; 18 (2): 171-184. doi: 10.3906/elk-0906-67
  • [18] Çiçek S, Uyaroğlu Y, Pehlivan İ. Simulation and circuit implementation of Sprott case H chaotic system and its synchronization application for secure communication systems. Journal of Circuits, Systems and Computers 2013; 22 (4): 1350022. doi: 10.1142/S0218126613500229
  • [19] Xue W, Li Y, Cang S, Jia H, Wang Z. Chaotic behavior and circuit implementation of a fractional-order permanent magnet synchronous motor model. Journal of the Franklin Institute 2015; 352 (7): 2887-2898. doi: 10.1016/j.jfranklin.2015.05.025
  • [20] Chunbiao L, Pehlivan İ, Sprott JC. Amplitude-phase control of a novel chaotic attractor. Turkish Journal of Electrical Engineering & Computer Sciences 2016; 24 (1): 1-11. doi: 10.3906/elk-1301-55
  • [21] Zhang X, Li Z, Chang D. Dynamics, circuit implementation and synchronization of a new three-dimensional fractional-order chaotic system. AEU-International Journal of Electronics and Communications 2017; 82: 435-445. doi: 10.1016/j.aeue.2017.10.020
  • [22] Singh JP, Roy BK, Jafari S. New family of 4-D hyperchaotic and chaotic systems with quadric surfaces of equilibria. Chaos, Solitons & Fractals 2018; 106: 243-257. doi: 10.1016/j.chaos.2017.11.030
  • [23] Chithra A, Mohammed IR, Rizwana R. Observation of chaotic and strange nonchaotic attractors in a simple multiscroll system. Journal of Computational Electronics 2018; 17 (1): 51-60. doi: 10.1007/s10825-017-1104-6
  • [24] Yu F, Li P, Gu K, Yin B. Research progress of multi-scroll chaotic oscillators based on current-mode devices. Optik 2016; 127 (13): 5786-5490. doi: 10.1016/j.ijleo.2016.03.048
  • [25] Trejo-Guerra R, Tlelo-Cuautle E, Carbajal-Gomez VH, Rodriguez-Gomez G. A survey on the integrated design of chaotic oscillators. Applied Mathematics and Computation 2013; 219 (10): 5113-5122. doi: 10.1016/j.amc.2012.11.021
  • [26] Peng Z, Wang C, Luo X. A novel multi-directional multi-scroll chaotic system and its CCII+ circuit implementation.Optik 2014; 125 (22): 6665-6671. doi: 10.1016/j.ijleo.2014.08.019
  • [27] Jothimurugan R, Suresh K, Ezhilarasu PM, Thamilmaran K. Improved realization of canonical Chua’s circuit with synthetic inductor using current feedback operational amplifiers. AEU-International Journal of Electronics and Communications 2014; 68 (5): 413-421. doi: 10.1016/j.aeue.2013.11.004
  • [28] Lin Y, Wang C, He H. A simple multi-scroll chaotic oscillator employing CCIIs. Optik 2015; 126 (7-8): 824-827. doi: 10.1016/j.ijleo.2015.02.028
  • [29] Trejo-Guerra R, Tlelo-Cuautle E, Cruz-Hernandez C, Sanchez-Lopez C. Chaotic communication system using Chua’s oscillators realized with CCII+s. International Journal of Bifurcation and Chaos 2009; 19 (12): 4217-4226. doi: 10.1142/S0218127409025304
  • [30] Sanchez-Lopez C. A 1.7 MHz Chua’s circuit using VMs and CF+s. Revista Mexicana de Física 2012; 58 (1): 86-93.
  • [31] Ping Z, Li-Jia W, Xue-Feng C. A novel fractional-order hyperchaotic system and its synchronization. Chinese Physics B 2009; 18 (7): 2674. doi: 10.1088/1674-1056/18/7/009
  • [32] El-Sayed AMA, Nour HM, Elsaid A, Elsonbaty A. Dynamical behaviors of a new hyperchaotic system with one nonlinear term. Electronic Journal of Mathematical Analysis and Applications 2015; 3 (1): 1-18.
  • [33] Sprott JC. A Proposed standard for the publication of new chaotic systems. International Journal of Bifurcation and Chaos 2011; 21 (9): 2391-2394. doi: 10.1142/S021812741103009X
  • [34] Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena 1985; 16 (3): 285-317. doi: 10.1016/0167-2789(85)90011-9
  • [35] Schmitz R. Use of chaotic dynamical systems in cryptography. Journal of the Franklin Institute 2001; 338 (4): 429-441. doi: 10.1016/S0016-0032(00)00087-9
  • [36] Pisarchik AN, Jaimes-Reàtegui R, Sevilla-Escoboza JR, Ruiz-Oliveras FR, Garcìa-Lòpez JH. Two-channel optoelectronic chaotic communication system. Journal of the Franklin Institute 2012; 349 (10): 3194-3202. doi: 110.1016/j.jfranklin.2012.10.005
  • [37] Martìnez-Guerra R, Garcìa JJM, Prieto SMD. Secure communications via synchronization of Liouvillian chaotic systems. Journal of the Franklin Institute 2016; 353 (17): 4384-4399. doi: 10.1016/j.jfranklin.2016.08.011
  • [38] Sedra A, Smith KC. A second-generation current conveyor and its applications. IEEE Transactions on Circuit Theory 1970; 17 (1): 132-134. doi: 10.1109/TCT.1970.1083067
  • [39] Gupta A. A study on current conveyors and their applications. Journal of Multi Disciplinary Engineering Technologies 2015; 9: 10-17.
  • [40] Barboza R. Hyperchaos in a chua’s circuit with two new added branches. International Journal of Bifurcation and Chaos 2008; 18 (4): 1151-1159. doi: 10.1142/S0218127408020884
  • [41] Wei Z, Moroz I, Sprott JC, Akgul A, Zhang W. Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo. Chaos 2017; 27: 033101. doi: 10.1063/1.4977417
  • [42] Jia Q. Hyperchaos generated from the Lorenz chaotic system and its control. Physics Letters A 2007; 366 (3): 217-222. doi: 10.1016/j.physleta.2007.02.024
  • [43] Feng C, Cai L, Kang Q, Wang S, Zhang H. Novel hyperchaotic system and Its circuit implementation. Journal of Computational and Nonlinear Dynamics 2017; 10 (6): 0610121. doi: 10.1115/1.4029227
  • [44] Zheng S, Dong G, Bi Q. A new hyperchaotic system and its synchronization. Applied Mathematics and Computation 2010; 215 (9): 3192-3200. doi: 10.1016/j.amc.2009.09.060
  • [45] Wen-Bo L, Tang WKS, Guan-Rong C. Forming and implementing a hyperchaotic system with rich dynamics. Chinese Physics B 2011; 20 (9): 090510. doi: 10.1088/1674-1056/20/9/090510
  • [46] Yu S, Lü J, Chen G. A family of n-scroll hyperchaotic attractors and their realization. Physics Letters A 2007; 364 (3-4): 244–251. doi: 10.1016/j.physleta.2006.12.029
  • [47] Chen DY, Shi L, Chen HT, Ma XY. Analysis and control of a hyperchaotic system with only one nonlinear term. Nonlinear Dynamics 2012; 67: 1745-1752. doi: 10.1007/s11071-011-0102-7
  • [48] Zhou P, Ding R. A novel hyperchaotic system and its circuit implementation. Key Engineering Materials 2011; 467-469: 321-324. doi: 10.4028/www.scientific.net/KEM.467-469.321
  • [49] Yu F, Liu L, Shen H, Zhang Z, Huang Y et al. Dynamic analysis, circuit design, and synchronization of a novel 6D memristive four-wing hyperchaotic system with multiple coexisting attractors. Complexity 2020; 2020: 5904607. doi: 10.1155/2020/5904607
  • [50] Singh JP, Roy BK. Analysis of an one equilibrium novel hyperchaotic system and its circuit validation. International Journal of Control Theory and Applications 2015; 8 (3): 1015-1023.
  • [51] Yu F, Shen H, Liu L, Zhang Z, Huang Y et al. CCII and FPGA realization: a multistable modified fourth-order autonomous Chua’s chaotic system with coexisting multiple attractors. Complexity 2020; 2020: 5212601. doi: 10.1155/2020/5212601
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK