Modified hexagonal Sierpinski gasket-based antenna design with multiband and miniaturized characteristics for UWB wireless communication

Modified hexagonal Sierpinski gasket-based antenna design with multiband and miniaturized characteristics for UWB wireless communication

:A modified hexagonal Sierpinski gasket-based fractal antenna is proposed for ultrawide-band (UWB) wireless applications. The designed antenna has miniaturized (36 × 48 mm2 ) and multiband characteristics. Two design guidelines, the partial ground plane technique and the circular annular ring patch on the substrate, are applied to improve impedance matching and radiation pattern characteristics. According to the simulation results, the proposed modified antenna has a reflection coefficient S11 of less than 15 dB, a linear phase of the reflection coefficient, 80% radiation efficiency, 2 4.5 dBi antenna gain, and omnidirectional radiation pattern properties over the full UWB spectrum (3.1 10.6 GHz). Simulated results obtained for this antenna show the expected good radiation behavior within the full 7.5-GHz UWB bandwidth.

___

  • [1] Kohno R. State of arts in ultra wideband (UWB) wireless technology and global harmonization. In: IEEE 2004 European Microwave Conference; 12–14 October 2004; Amsterdam, the Netherlands. New York, NY, USA: IEEE. pp. 1093–1099.
  • [2] FCC. Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems FCC, Report FCC 02–48. Washington, DC, USA: FCC, 2002.
  • [3] Balakrishnan J, Batra A, Dabak A. A multi-band OFDM system for UWB communication. In: IEEE 2003 Ultra Wideband Systems and Technologies Conference; 16–19 November 2003; Reston, VA, USA. New York, NY, USA: IEEE. pp. 354–358.
  • [4] Duan C, Pekhteryev G, Fang J, Nakache Y, Zhang J, Tajima K, Nishioka Y, Hirai H. Transmitting multiple HD video streams over UWB links. In: IEEE 2006 Consumer Communications and Networking Conference; 8–10 January 2006; Las Vegas, NV, USA. New York, NY, USA: IEEE. pp. 691–695.
  • [5] Schantz H. The Art and Science of Ultrawideband Antennas. 1st ed. Norwood, MA, USA: Artech House, 2005.
  • [6] Chen NZ, Wu XH, Li HF, Yang N, Chia MYW. Considerations for source pulses and antennas in UWB systems. IEEE T Antenn Propag 2004; 7: 1739–1748.
  • [7] Agrawall NP, Kumar G, Ray KP. Wideband planar monopole antennas. IEEE T Antenn Propag 1998; 46: 294–295.
  • [8] Low ZN, Cheong JH, Law CL. Low-cost PCB antenna for UWB applications. IEEE Antenn Wirel Pr 2005; 4: 237–239.
  • [9] Suh SY, Stutzman WL, Davis WA. A new ultrawideband printed monopole antenna: the planar inverted cone antenna (PICA). IEEE T Antenn Propag 2004; 52: 1361–1364.
  • [10] Jung J, Choi W, Choi J. A small wideband microstrip fed monopole antenna. IEEE Microw Lett 2005; 15: 703–705.
  • [11] Hansen CR. Fundamental limitations in antennas. P IEEE 1981; 69: 170–182.
  • [12] Werner DH, Ganguly S. An overview of fractal antennas engineering research. IEEE Antenn Propag M 2003; 45: 38–56.
  • [13] Hwang KC. A modified Sierpinski fractal antenna for multiband application. IEEE Antenn Wirel Pr 2007; 6: 357–360.
  • [14] Pourahmadazar J, Ghobadi C, Nourinia J. Novel modified Pythagorean tree fractal monopole antennas for UWB applications. IEEE Antenn Wirel Pr 2011; 10: 484–487.
  • [15] Oraizi H, Hedayati S. Miniaturized UWB monopole microstrip antenna design by the combination of Giusepe Peano and Sierpinski carpet fractals. IEEE Antenn Wirel Pr 2011; 10: 67–70.
  • [16] Kaka AO, Toycan M, Bashiry V, Walker SD. Modified Hilbert fractal geometry, multi-service, miniaturized patch antenna for UWB wireless communication. COMPEL 2012; 31: 1835–1849.
  • [17] Sundaram A, Maddela M, Ramadoss R. Koch-Fractal folded-slot antenna characteristics. IEEE Antenn Wirel Pr 2007; 6: 219–222.
  • [18] Peitgen HO, Jurgens H, Saupe D. Chaos and Fractals. 2nd ed. New York, NY, USA: Springer-Verlag, 2004.
  • [19] Puente C, Romeu J, Pous R, Garcia X, Benitez F. Fractal multiband antenna based on the Sierpinski gasket. IEEE Elect Lett 1996; 32: 1–2.
  • [20] Puente C, Romeu J, Bartolome R, Pous R. Perturbation of the Sierpinski antenna to allocate operating bands. IEEE Elect Lett 1996; 32: 2186–2188.
  • [21] Puente C, Romeu J, Pous R, Cardama A. On the behavior of the Sierpinski multiband fractal antenna. IEEE T Antenn Propag 1998; 46: 517–524.
  • [22] Kaka A, Toycan M, Bashiry V, Ademgil H, Walker SD. A fractal geometry, multi-band, miniaturized monopole antenna design for UWB wireless applications. In: IEEE-APS 2011 Antennas and Propagation in Wireless Communication Topical Conference; 12–16 September 2011; Turin, Italy. New York, NY, USA: IEEE. pp. 584–587.
  • [23] Mishra RK, Ghatak R, Poddar DR. Design formula for Sierpinski gasket pre-fractal planar-monopole antennas. IEEE Antenn Propag M 2008; 50: 104–107.
  • [24] Vinoy KJ, Abraham JK, Varadan VK. On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves. IEEE T Antenn Propag 2003; 51: 2296–2303.
  • [25] Kimouche H, Abed D, Atrouz B, Aksas R. Bandwidth enhancement of rectangular monopole antenna using modified semi-elliptical ground plane and slots. Microw Opt Techn Let 2010; 52: 54–58.
  • [26] Nikoli´c MM, Djordjevi´c AR. Improving radiation pattern of microstrip antennas. In: IEEE 2006 Antennas and Propagation Conference; 6–10 November 2006; Nice, France. New York, NY, USA: IEEE. pp. 1–6.
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK