Improving theperformance of primal dual interior-point method in inverse conductivity problems

Improving theperformance of primal dual interior-point method in inverse conductivity problems

Abstract: This study improves the performance of primal dual interior-point method in inverse conductivity problems via replacing the conventional, complicatedly calculated scalar regularization parameter with a diagonal matrix termedmulti-regularization parameter matrix here. The solution of the PD IPM depends considerably on the choice of the regularization parameter. Calculation of the optimal regularization parameter, which yields the most accurate solution, is not simple due to the long iterative nature of the algorithm. The objective optimization, which is implemented by minimizing error in the solutions over an extensive range of the regularization parameters, yields the most accurate solution that can be achieved, although this method is not applicable in reality due to lack of knowledge about the actual conductivity field. However, the modified algorithm not only solves the problem independently using the regularization parameter, but also increases the accuracy of the solution, as well as its sharpness in comparison to the objective optimization.

___

  • [1] A. Borsic, “Regularisation methods for imaging from electrical measurements”. PhD thesis, Oxford Brooks Univer- sity, 2002.
  • [2] C. Li, N. Duric, P. Littrup, L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography”, Ultra- sound in Medicine & Biology Vol. 35, pp. 1625–1628, 2009.
  • [3] L.I. Rudin, S. Osher, E. Fatemi, “Nonlinear total variation based noise removal algorithms”. Phys. D., Vol. 60, pp. 259–268, 1992.
  • [4] D.C. Dobson, F. Santosa, “Recovery of blocky images from noisy and blurred data”. SIAM Journal on Applied Mathematics Vol. 56(4), pp.1181–1198, 1996.
  • [5] R. Acar, C.R. Vogel, “Analysis of bounded variation penalty methods for ill-posed problems”. Inverse Problems, Vol. 10, pp. 1217–1229, 1994.
  • [6] D.C. Dobson, F. Santosa, “An image enhancement technique for electrical impedance tomography”. Inverse Prob- lems, Vol. 10, pp. 317–334, 1994.
  • [7] C.R. Vogel, M.E. Oman, “Iterative methods for total variation denoising”. SIAM J. Sci. Computing, Vol. 17, pp. 227–238, 1996.
  • [8] T.F. Chan, H.M. Zhou, R.H. Chan, “A continuation method for total variation denoising problems”. UCLA CAM Tech. Rep, pp. 95–18, 1995.
  • [9] T.F. Chan, G. Golub, P. Mulet, “A nonlinear primal dual method for TV-based image restoration”. UCLA CAM Tech. Rep, pp. 95–43, 1996.
  • [10] C.R. Vogel, “Nonsmooth Regularization”, in H.W. Engl, A.K. Louis, W. Rundell (Eds.), Inverse Problems in Geophysical Applications. SIAM Philadelphia, 1997.
  • [11] K.D. Andersen, “An efficient Newton barrier method for minimizing a sum of Euclidean norms”. SIAM J. on Optimization, Vol. 6, pp. 74–95, 1996.
  • [12] K.D. Andersen, E. Christiansen, A. Conn, M.L. Overton, “An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms”. SIAM J. Sci. Comput., Vol. 22, pp. 243–262, 2000.
  • [13] S. Kim, K.M. Lustig, S. Boyd, “An interior-point method for large scale Ll-regularized least squares”. IEEE Journal of Selected Topics in Signal Processing, Vol. 1(4), pp. 606–617, 2007.
  • [14] G. Shou, L. Xia, M. Jiang, “Total variation regularization in Electrocardiographic mapping”. Lecture Notes in Computer Science, 6330 pp. 51–59, 2010.
  • [15] B.M. Graham, “Enhancements in electrical impedance tomography (EIT) image reconstruction for 3D lung imag- ing”. PhD thesis, University of Ottawa, April 2007.
  • [16] A. Borsic, B.M. Graham, A. Adler, W.R.B. Lionheart, “In vivo impedance imaging with total variation regulariza- tion”. IEEE Trans. Med. Imag., Vol. 29(1), pp. 44–54, 2010.
  • [17] S. Pan, X. Li, S. He, “An infeasible primal–dual interior point algorithm for linear programs based on logarithmic equivalent transformation”, J. Math. Anal. Appl., Vol. 314, pp. 644–660, 2006.
  • [18] Y.Q. Bai, G.Q. Wang, C. Roos, “Primal dual interior-point algorithms for second-order cone optimization based on kernel functions”. Nonlinear Analysis, Vol. 70, pp. 3584–3602, 2009.
  • [19] G.Q. Wang, Y.Q. Bai, “Primal-dual interior-point algorithm for convex quadratic semi-definite optimization”. Nonlinear Analysis, Vol. 71, pp. 3389–3402, 2009.
  • [20] EIDORS 3.5, Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software, 2011.
  • [21] http://eidors3d.sourceforge.net/tutorial/adv image reconst/TV compare hyperparams.shtml.
  • [22] A. Adler, R. Guardo, “Electrical impedance tomography: regularized imaging and contrast detection”. Trans. Med. Imag., Vol. 15(2), pp. 170–179, 1996.
  • [23] B.M. Graham, A. Adler, “Objective selection of hyperparameter for EIT”. Physiol. Meas., 27, pp. 65–79, 2006.
  • [24] J.L. Wheeler, W. Wang, M. Tang, “A comparison of methods for measurement of spatial resolution in two- dimensional circular EIT images”. Physiol. Meas., Vol. 23, pp. 169–176, 2002.
  • [25] A. Adler, J.H. Arnold, R. Bayford, A. Borsic, B. Brown, P. Dixon, T.J.C. Faes, I. Frerichs, H. Gagnon, Y. Gaerber, B. Grychtol, G. Hahn, W.R.B. Lionheart, A. Malik, R.P. Patterson, J. Stocks, A. Tizzard, N. Weiler, G.K. Wolf, “GREIT: a unified approach to 2D linear EIT reconstruction of lung images”. Physiol. Meas., Vol. 30, pp. 35–55, 2009.
  • [26] A. Javaherian, A. Movafeghi, R. Faghihi, E. Yahaghi, “Assessment of contrast positioning effects on reconstructed images of elliptical models in EIT applying different Current patterns”. J. Applied Sci. Vol. 12(6), pp. 518–534, 2012.
  • [27] T.K. Bera, S.K. Biswas, K. Rajan, J. Nagaraju, “Improving conductivity image quality using block matrix-based multiple regularization (BMMR) technique in EIT : A simulation study”. J. Electr. Bioimp., Vol. 2, pp. 33–47, 2011.
  • [28] A. Javaherian, A. Movafeghi, R. Faghihi, “Reducing negative effects of quadratic norm regularizationimage reconstruction in electrical impedance tomography”, Appl. Math. Model. (in press), availablehttp://dx.doi.org/10.1016/j.apm.2012.11.022.
  • [29] EIDORS 3.5, Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software, 2011. http://eidors3d.sourceforge.net.
  • [30] EIDORS 3.5, Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software, 2011.
  • [31] http://eidors3d.sourceforge.net/tutorial/adv image reconst/total variation.shtml.
  • [32] A. Boyle, A. Adler, “The impact of electrode area, contact impedance and boundary shape on EIT images”. Physiol. Meas., Vol. 32, pp. 745–754, 2011.
  • [33] EIDORS 3.5, Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software, 2011.
  • [34] http://eidors3d.sourceforge.net/tutorial/EIDORS basics/tutorial130.shtml.
  • [35] B.M. Graham, A. Adler, “Electrode placement configurations for 3D EIT”. Physiol. Meas. Vol. 28, pp. 29–44, 2007.
  • [36] EIDORS 3.5, Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software, 2011.
  • [37] http://eidors3d.sourceforge.net/data contrib/cg deforming tank phantom/cg deforming tank phantom 02.shtml.
  • [38] X. Song, B.W. Pogue, S. Jiang, M.M. Doyley, H. Dehghani, T.D. Tosteson, K.D. Paulsen, “Automated region detection based on the contrast-to-noise ratio in near-infrared tomography”. Appl. Opt., Vol. 43, pp. 1053–1062, 2004.
  • [39] T.K. Bera, J. Nagaraju, “Resistivity imaging of a reconfigurable phantom with circular inhomogeneities inelectrical impedance tomography”. J. Measurement., Vol. 44(3), pp. 518–526, 2011.
  • [40] B. Li, D. Que, “Medical images denoising based on total variation algorithm”, Procedia Environmental Sciences Vol. 8, pp. 227–234, 2011.
  • [41] Y. Shi, X. Yang, “New total variation regularized L 1 model for image restoration”, Digital Signal Processing,20, pp. 1656–1676, 2010.