Gravitational search algorithm for determining controller parameters in an automatic voltage regulator system

Gravitational search algorithm for determining controller parameters in an automatic voltage regulator system

: This paper presents optimal tuning of the controller parameters of a proportional-integral-derivate (PID) controller for an automatic voltage regulator (AVR) system using a heuristic gravitational search algorithm (GSA) based on mass interactions and Newton s law of gravity. The determination of optimal controller parameters is considered an optimization problem in which different performance indexes and a performance criterion in the time domain have been used as objective functions to test the performance and effectiveness of the GSA. In the determining process of the parameters, the designed PID controller with the proposed approach is simulated under different conditions and the performance of the controller is compared with those reported in the literature. From the numerical simulation results it is clear that the GSA approach is successfully applied to reveal the performance and the feasibility of the proposed controller in the AVR system

___

  • [1] Chatterjee A, Mukherjee V, Ghoshal SP. Velocity relaxed and craziness-based swarm optimized intelligent PID and PSS controlled AVR system. Int J Elec Power 2009; 31: 323-333.
  • [2] Gaing ZL. A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE T Energy Conver 2004; 19: 384-391.
  • [3] Coelho LS, Herrera BAM. Quantum gaussian particle swarm optimization approach for PID controller design in AVR system. IEEE International Conference on Systems, Man and Cybernetics, SMC; 12–15 October 2008; Singapore, Singapore: IEEE. pp. 3708-3713.
  • [4] Coelho LS. Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach. Chaos, Solitons and Fractals 2009; 39: 1504-1514.
  • [5] Jan RM, Tseng CS, Liu RJ. Robust PID control design for permanent magnet synchronous motor: a genetic approach. Electr Pow Syst Res 2008; 78: 1161-1168.
  • [6] Chang WD. A multi-crossover genetic approach to multivariable PID controllers tuning. Expert Syst Appl 2007; 33: 620-626.
  • [7] Wang YP, Watson NR, Chong HH. Modified genetic algorithm approach to design of an optimal PID controller for AC-DC transmission systems. Int J Elec Power 2002; 24: 59-69.
  • [8] Herreros A, Baeyens E, Peran JR. Design of PID-type controllers using multiobjective genetic algorithms. ISA T 2002; 41: 457-472.
  • [9] Duman S, Ozt¨urk A. Robust design of PID controller for power system stabilization by using real coded genetic ¨ algorithm. Int Rev Electr Eng-I 2010; 5: 2159-2170.
  • [10] Hung ML, Lin JS, Yan JJ, Liao TL. Optimal PID control design for synchronization of delayed discrete chaotic systems. Chaos, Solitons and Fractals 2008; 35: 781-785.
  • [11] Iruthayarajan MW, Baskar S. Evolutionary algorithms based design of multivariable PID controller. Expert Syst Appl 2009; 36: 9159-9167.
  • [12] Coelho LS, Bernert DLA. A modified ant colony optimization algorithm based on differential evolution for chaotic synchronization. Expert Syst Appl 2010; 37: 4198-4203.
  • [13] Coelho LS, Bernert DLA. Chaotic synchronization using PID control combined with population based incremental learning algorithm. Expert Syst Appl 2010; 37: 5347-5352.
  • [14] Chang WD. PID control for chaotic synchronization using particle swarm optimization. Chaos, Solitons and Fractals 2009; 39: 910-917.
  • [15] Chang WD, Shih SP. PID controller design of nonlinear systems using an improved particle swarm optimization approach. Commun Nonlinear Sci 2010; 15: 3632-3639.
  • [16] Zhao SZ, Iruthayarajan MW, Baskar S, Suganthan PN. Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization. Inform Sciences 2011; 181: 3323-3335.
  • [17] Bin DH, Bo WD, Fen YX. Novel approach to nonlinear PID parameter optimization using ant colony optimization algorithm. J Bionic Eng 2006; 3: 73-78.
  • [18] Boubertakh H, Tadjine M, Glorennec PY, Labiod S. Tuning fuzzy PID controllers using ant colony optimization. 17th Mediterranean Conference on Control & Automation; 24–26 June 2009; Thessaloniki, Greece: IEEE. pp. 13-18.
  • [19] Ma XM. Application of ant colony algorithm in PID parameter optimization for mining hoist direct torque control system. In: International Conference on Advanced Computer Control; 22–24 January 2009; Singapore, Singapore: IEEE. pp. 632-636.
  • [20] Kim DH, Park JI. Intelligent PID controller tuning of AVR system using GA and PSO. In: International Conference on Intelligent Computing (ICIC); 23–26 August 2005; Hefei, China: ICIC. pp. 366-375.
  • [21] Zhu H, Li L, Zhao Y, Guo Y, Yang Y. CAS algorithm-based optimum design of PID controller in AVR system. Chaos, Solitons and Fractals 2009; 42: 792-800.
  • [22] Mukherjee V, Ghoshal SP. Craziness based and velocity relaxed swarm optimized intelligent PID controlled AVR system. In: International Conference on Power System Technology and IEEE Power India Conference (POWERCON 2008); 12–15 October 2008; New Delhi, India: IEEE. pp. 1-8.
  • [23] Kim DH. Hybrid GA-BF based intelligent PID controller tuning for AVR system. Appl Soft Comput 2011; 11: 11-22.
  • [24] Gozde H, Taplamacioglu MC. Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. J Frankl Inst 2011; 348: 1927-1946.
  • [25] Mukherjee V, Ghoshal SP. Intelligent particle swarm optimized fuzzy PID controller for AVR system. Electr Pow Syst Res 2007; 77: 1689-1698
  • [26] El-Zonkoly AM. Optimal tuning of power systems stabilizers and AVR gains using particle swarm optimization. Expert Syst Appl 2006; 31: 551-557.
  • [27] Zamani M, Ghartemani MK, Sadati N, Parniani M. Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Eng Pract 2009; 17: 1380-1387.
  • [28] Kim DH, Abraham A, Cho JH. A hybrid genetic algorithm and bacterial foraging approach for global optimization. Inform Sciences 2007; 177: 3918-3937.
  • [29] Rashedi E, Nezamabadi-pour H, Saryazdi S. GSA: a gravitational search algorithm. Inform Sciences 2009; 179: 2232-2248.
  • [30] Rashedi E, Nezamabadi-pour H, Saryazdi S. Filter modeling using gravitational search algorithm. Eng Appl Artif Intel 2011; 24: 117-122.
  • [31] Ceylan O, Ozdemir A, Dag H. Gravitational search algorithm for post-outage bus voltage magnitude calculations. In: International Universities’ Power Engineering Conference; 31 Aug–3 Sep 2010; Wales, UK: UPEC. pp. 1-6.
  • [32] Duman S, G¨uven¸c U, Y¨or¨ukeren N. Gravitational search algorithm for economic dispatch with valve-point effects. Int Rev Electr Eng-I 2010; 5: 2890-2895.
  • [33] Rashedi E, Nezamabadi-pour H, Saryazdi S. BGSA: binary gravitational search algorithm. Nat Comp Ser 2010; 9: 727-745.
  • [34] Duman S, Sonmez Y, G¨uven¸c U, Y¨or¨ukeren N. Application of gravitational search algorithm for optimal reactive power dispatch problem. In: International Symposium on Innovations in Intelligent Systems and Applications (INISTA 2011); 15–18 June 2011; Istanbul, Turkey: INISTA. pp. 519-523.
  • [35] Li C, Zhou J. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm. Energ Convers Manage 2011; 52: 374-381.
  • [36] Yin M, Hu Y, Yang F, Li X, Gu W. A novel hybrid K-harmonic means and gravitational search algorithm approach for clustering, Expert Syst Appl 2011; 38: 9319-9324.
  • [37] Sarafrazi S, Nezamabadi-pour H. Facing the classification of binary problems with a GSA-SVM hybrid system. Math Comput Model 2013; 57: 270-278.
  • [38] Chatterjee A, Mahanti GK, Mahapatra PRS. Generation of phase-only pencil-beam pair from concentric ring array antenna using gravitational search algorithm. In: International Conference on Communications and Signal Processing (ICCSP); 11–12 February 2011; Kerala, India: ICCSP. pp. 384-388.
  • [39] Chatterjee A, Mahanti GK, Pathak N. Comparative performance of gravitational search algorithm and modified particle swarm optimization algorithm for synthesis of thinned scanned concentric ring array antenna. PIER B 2010; 25: 331-348.
  • [40] Abarghouei AA. A novel solution to traveling salesman problem using fuzzy sets, gravitational search algorithm, and genetic algorithm. MSc, Malaysia Technology University, Skudai, Malaysia, 2010.