Field-of-view optimization of magnetically actuated 2D gimballed scanners

Field-of-view optimization of magnetically actuated 2D gimballed scanners

This work presents the field of view (FOV) maximization of a magnetically actuated two-dimensional (2D) gimballed scanner. The process of maximization is completed in two steps. (1) Optimization of the electrocoil providing the magnetic force that moves the scanner and (2) precise choice of optimum respective locations of both the scanner and the electrocoil. We first derived a formula relating the generated magnetic flux density, coil design parameters and driving voltage. Subsequently, we discussed the design trade-offs of an actuating electrocoil. We also conducted several experiments on a stainless steel 430 scanner having a footprint of 15 mm × 15 mm and a thickness of 460 μm . We determined the precise locations for the system components producing the maximum total optical scan angle (TOSA) hence the largest FOV. Finally, we proposed an empirically demonstrated formula, p(x1, y1) ≈ p(0.25Ls + 0.25Lm) , for the optimum electrocoil location with respect to the scanner by providing an offset ∆ x and ∆ y from the center to be able to successfully maximize the displacement and the related total optical scan angle of the system.

___

  • 1] Holmström ST, Baran U, Urey H. MEMS laser scanners: a review. Journal of Microelectromechanical Systems 2014; 23 (2): 259-275. doi: 10.1109/JMEMS.2013.2295470
  • [2] Chellappan KV, Erden E, Urey H. Laser-based displays: a review. Applied optics 2010; 49 (25): F79-F98. doi: 10.1364/AO.49.000F79
  • [3] Hofmann U, Janes J, Quenzer HJ. High-Q MEMS resonators for laser beam scanning displays. Micromachines 2012; 3 (2): 509-528. doi: 10.3390/mi3020509
  • [4] Taya SA. Dispersion properties of lossy, dispersive, and anisotropic left-handed material slab waveguide. Optik 2015; 126 (14): 1319-1323. doi: 10.1016/j.ijleo.2015.04.013
  • [5] Taya SA, El-Agez TM. Optical sensors based on Fabry–Perot resonator and fringes of equal thickness structure. Optik 2012; 123 (5): 417-421. doi: 10.1016/j.ijleo.2011.04.020
  • [6] Urey H. Torsional MEMS scanner design for high-resolution scanning display systems. In: Optical Scanning, International Symposium on Optical Science and Technology; Seattle, WA, United States; 2002. pp. 27-37.
  • [7] Hung ACL, Lai HYH, Lin TW, Fu SG, Lu MSC. An electrostatically driven 2D micro-scanning mirror with capacitive sensing for projection display. Sensors and Actuators A: Physical 2015; 222: 122-129. doi: 10.1016/j.sna.2014.10.008
  • [8] Ataman Ç, Lani S, Noell W, De Rooij N. A dual-axis pointing mirror with moving-magnet actuation. Journal of Micromechanics and Microengineering 2012; 23 (2): 025002. doi: 10.1088/0960-1317/23/2/025002
  • [9] Yi YW, Liu C. Magnetic actuation of hinged microstructures. Journal of Microelectromechanical Systems 1999; 8 (1): 10-17. doi: 10.1109/84.749397
  • [10] Niarchos D. Magnetic MEMS: key issues and some applications. Sensors and Actuators A: Physical 2003; 109 (1-2): 166-173. doi: 10.1016/j.sna.2003.09.010
  • [11] Filhol F, Defay E, Divoux C, Zinck C, Delaye MT. Resonant micro-mirror excited by a thin-film piezoelec- tric actuator for fast optical beam scanning. Sensors and Actuators A: Physical 2005; 123: 483-489. doi: 10.1016/j.sna.2005.04.029
  • [12] Jain A, Qu H, Todd S, Xie H. A thermal bimorph micromirror with large bi-directional and vertical actuation. Sensors and Actuators A: Physical 2005; 122 (1): 9-15. doi: 10.1016/j.sna.2005.02.001
  • [13] Liu C. Foundations of MEMS. Upper Saddle River, NJ, USA: Prentice Hall, 2012.
  • [14] Wang Y, Gokdel YD, Triesault N, Wang L, Huang YY et al. Magnetic-actuated stainless steel scanner for two- photon hyperspectral fluorescence microscope. Journal of Microelectromechanical Systems 2014; 23 (5): 1208-1218. doi: 10.1109/JMEMS.2014.2308573
  • [15] Ryan P, Diller E. Magnetic actuation for full dexterity microrobotic control using rotating permanent magnets. IEEE Transactions on Robotics 2017; 33 (6): 1398-1409. doi: 10.1109/TRO.2017.2719687
  • [16] Park B, Afsharipour E, Chrusch D, Shafai C, Andersen D et al. Large displacement bi-directional out-of-plane Lorentz actuator array for surface manipulation. Journal of Micromechanics and Microengineering 2017; 27 (8): 085005. doi: 10.1088/1361-6439/aa7970
  • [17] Cho HJ, Ahn CH. A bidirectional magnetic microactuator using electroplated permanent magnet arrays. Journal of Microelectromechanical Systems 2002; 11 (1): 78-84. doi: 10.1109/84.982866
  • [18] Yan J, Luanava S, Casasanta V. Magnetic actuation for MEMS scanners for retinal scanning displays. In: MOEMS Display and Imaging Systems, International Society for Optics and Photonics; San Jose, CA, United States; 2003. pp. 115-120.
  • [19] Bernstein JJ, Taylor WP, Brazzle JD, Corcoran CJ, Kirkos G et al. Electromagnetically actuated mirror arrays for use in 3-D optical switching applications. Journal of Microelectromechanical Systems 2004; 13 (3): 526-535. doi: 10.1109/JMEMS.2004.828705
  • [20] Gokdel YD, Sarioglu B, Mutlu S, Yalcinkaya AD. Design and fabrication of two-axis micromachined steel scanners. Journal of Micromechanics and Microengineering 2009; 19 (7): 075001. doi: 10.1088/0960-1317/19/7/075001
  • [21] Thiruvengadam V, Vitta S. Flexible bacterial cellulose/permalloy nanocomposite xerogel sheets–Size scalable mag- netic actuator-cum-electrical conductor. Aip Advances 2017; 7 (3): 035107. doi: 10.1063/1.4977558
  • [22] Inomata N, Suwa W, Van Toan N, Toda M et al. Resonant magnetic sensor using concentration of magnetic field gradient by asymmetric permalloy plates. Microsystem Technologies 2019; 25 (10): 3983-3989. doi: 10.1007/s00542- 018-4257-8
  • [23] Garrett MW. Axially symmetric systems for generating and measuring magnetic fields. Part I. Journal of Applied Physics 1951; 22 (9): 1091-1107. doi: 10.1063/1.1700115
  • [24] Callaghan EE, Maslen SH. The magnetic field of a finite solenoid. Washington, USA: Work of the US Gov. Public Use Permitted, 1960.
  • [25] Taddese AZ, Slawinski PR, Pirotta M, De Momi E, Obstein KL et al. Enhanced real-time pose estimation for closed- loop robotic manipulation of magnetically actuated capsule endoscopes. The International Journal of Robotics Research 2019; 37 (8): 890-911. doi: 10.1177/0278364918779132
  • [26] Derby N, Olbert S. Cylindrical magnets and ideal solenoids. American Journal of Physics 2010; 78 (3): 229-235. doi: 10.1119/1.3256157
  • [27] Isikman SO, Urey H. Dynamic modeling of soft magnetic film actuated scanners. IEEE Transactions on Magnetics 2009; 45 (7): 2912-2919. doi: 10.1109/TMAG.2009.2014947
  • [28] Murakami K, Kamiya Y, Karatsu K, Miyajima H, Katashiro M. A MEMS gimbal scanner for a miniature confocal microscope. In: IEEE/LEOS International Conference on Optical MEMs; Lugano, Switzerland; 2002. pp. 9-10.
  • [29] Davis WO, Sprague R, Miller J. MEMS-based pico projector display. In: 2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics; Redmond WA, USA; 2008. pp. 31-32.
  • [30] Fujita T, Maenaka K, Takayama Y. Dual-axis MEMS mirror for large deflection-angle using SU-8 soft torsion beam. Sensors and Actuators A: Physical 2005; 121 (1): 16-21. doi: 10.1016/j.sna.2005.01.029
  • [31] Aguirre AD, Herz PR, Chen Y, Fujimoto JG, Piyawattanametha W et al. Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging. Optics express 2007; 15 (5): 2445-2453. doi: 10.1364/OE.15.002445
  • 32] Bateni MR, Wei P, Deng X, Petric A. Spinel coatings for UNS 430 stainless steel interconnects. Surface and Coatings Technology 2007; 201 (8): 4677-4684. doi: 10.1016/j.surfcoat.2006.10.011
  • [33] Van Zwieten ACTM, Bulloch JH. Some considerations on the toughness properties of ferritic stainless steels—a brief review. International Journal of Pressure Vessels and Piping 1993; 56 (1): 1-31. doi: 10.1016/0308-0161(93)90114-9
  • [34] Judy JW, Muller RS. Magnetic microactuation of torsional polysilicon structures. Sensors and Actuators A: Physical 1996; 53 (1-3): 392-397. doi: 10.1016/0924-4247(96)01138-7
  • [35] Tilmans HA. Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems. Journal of Micromechanics and Microengineering 1996; 6 (1): 157. doi: 10.1088/0960-1317/6/1/036
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Gabor filter-based localization of straight and curved needles in 2D ultrasound images

Özkan BEBEK, Mert KAYA, Enes ŞENEL

Highly sensitive fiber optic pressure sensors for wind turbine applications

Okan ESENTÜRK, Malik KAYA

A supervised learning approach for detecting erroneous samples in embeddings

Görkem SAYGILI

A mechanism of QoS differentiation based on offset time and adjusted burst length in OBS networks

Viet Minh Nhat VO, Van Hoa LE, Trung Duc PHAM, Thanh Chuong DANG

Wavelength sensitivity of indium tin oxide on surface plasmon resonance angles

Antonio A. RUIZ-RAMIREZ, Carlos VILLA-ANGULO, Ivan O. HERNANDEZ-FUENTES

Improving the efficiency of DNN hardware accelerator by replacing digital feature extractor with an imprecise neuromorphic hardware

Majid MOHAMMADIRAD, Omid SOJODISHIJANI

Diagnosis of speed sensor faults in an induction machine based on a robust adaptive super-twisting observer

Mohammed Zakaria KARI, Abdelkader MECHERNENE, Sidi Mohammed MELIANI, Ibrahim GUENOUNE

Distribution network reconfiguration based on artificial network reconfiguration for variable load profile

Mohamad Sofian Abu TALIP, Hazlie MOKHLIS, Hesham Hanie YOUSSEF, Mohammad Al SAMMAN, Munir Azam MUHAMMAD, Nurulafiqah Nadzirah MANSOR

Reconfiguration-based hierarchical energy management in multimicrogrid systems considering power losses, reliability index, and voltage enhancemen

Navid TAGHIZADEGAN KALANTARI, Sajad NAJAFI RAVADANEGH, Farid HAMZEH AGHDAM

mage subset communication for resource-constrained applications in wirelesssensor networksapplications in wirelesssensor networks

Sajid NAZIR, Omar A. ALZUBI, Mohammad KALEEM, Hassan HAMDOUN