Empirical model development for the estimation of clearness index using meteorological parameters

Empirical model development for the estimation of clearness index using meteorological parameters

The clearness index is an indispensable parameter required for the design and analysis of solar energysystems. In the absence of measured values for a specific location, the clearness index can be estimated from othermeasured meteorological variables. In this study three meteorological parameters, sunshine hours, monthly mean valuesof the temperature difference (∆T), and cloudiness, are used to develop empirical models for the estimation of clearnessindex. The empirical models are developed for five major cities in Pakistan (Karachi, Multan, Lahore, Islamabad, andQuetta). For empirical model development, long-term data (1991 to 2010) of monthly average clearness index, sunshinehours, average daily minimum and maximum temperatures, and cloudiness have been used. The accuracy of the modelshas been tested by statistical indicators that include mean percentage error (MPE), coefficient of determination (R2),mean absolute relative error (MARE), mean bias error (MBE), and root mean square error (RMSE). The error analysisrevealed that the proposed models are suitable for the estimation of the clearness index. It is also concluded that multipleregression models give better estimates of clearness index for all the stations (0.80 ≤ R2 ≤ 0.86) compared to singleparameter model and therefore are recommended. The study indicated that clear sky conditions prevail throughoutthe months at all the investigated sites (0.58 ≤ KT ≤ 0.68), which is a good indicator for solar energy utilization.The statistical indicators also suggest that multilinear regression model M-3 gives a better representation of the climatesystem and using three parameters reduces the uncertainties in the developed model.

___

  • [1] Mirza UK, Maroto-Valer MM, Ahmad N. Status and outlook of solar energy use in Pakistan. Renewable and Sustainable Energy Reviews 2003; 7(6): 501-514. doi: 10.1016/j.rser.2003.06.002
  • [2] Amir-ud-Din R. From energy blues to green energy: options before Pakistan. Pakistan Development Review 2014; 1: 309-325.
  • [3] Rafique MM, Rehman S, Alhems LM. Developing zero energy and sustainable villages–A case study for communities of the future. Renewable Energy 2018; 127 (C): 565-574. doi: 10.1016/j.renene.2018.04.087
  • [4] Al-Nabulsi MZ, Miah R, Rehman S, Al-Sulaiman FA. Techno-economic study of a solar photovoltaic and diesel powered irrigation systems. Desalination and Water Treatment 2018; 101: 92-100. doi: 10.5004/dwt.2018.21800
  • [5] Al-Ali AR, Rehman S, Al-Agili S, Al-Omari MH, Al-Fayezi M. Usage of photovoltaics in an automated irrigation system. Renewable Energy 2001; 23 (1): 17-26. doi: 0.1016/S0960-1481(00)00110-5
  • [6] Allouhi A, Agrouaz Y, Amine MB, Rehman S, Buker MS et al. A design optimization of a multitemperature solar thermal heating system for an industrial process. Applied Energy 2017; 206: 382-392. doi: 10.1016/j.apenergy.2017.08.196
  • [7] Sahin AZ, Rehman S, Al-Sulaiman F. Global solar radiation and energy yield estimation from photovoltaic power plants for small loads. International Journal of Green Energy 2017; 14 (5): 490-498. doi: 10.1080/15435075.2016.1278374
  • [8] Rehman S, El-Amin I. Performance evaluation of an off-grid photovoltaic system in Saudi Arabia. Energy 2012; 46 (1): 451-458. doi: 10.1016/j.energy.2012.08.004
  • [9] Rehman S, Ahmed MA, Mohamed MH, Al-Sulaiman FA. Feasibility study of the grid connected 10 MW installed capacity PV power plants in Saudi Arabia. Renewable and Sustainable Energy Reviews 2017; 80 (C): 319-329. doi: 10.1016/j.rser.2017.05.218
  • [10] Rehman S, Bader MA, Al-Moallem SA. Cost of solar energy generated using PV panels. Renewable and Sustainable Energy Reviews 2007; 11 (8): 1843-1857. doi: 10.1016/j.rser.2006.03.005
  • [11] Rafique M, Rehman S, Lashin A, Al Arifi N. Analysis of a solar cooling system for climatic conditions of five different cities of Saudi Arabia. Energies 2016; 9 (2): 75. doi: 10.3390/en9020075
  • [12] Rehman S, Alhems LM, Lashin A. Solar water heating system performance analysis for industrial applications for Jawf city in Saudi Arabia. Wulfenia Journal 2010; 22 (12): 392-407.
  • [13] Rehman S, Sahin AZ. Performance comparison of diesel and solar photovoltaic power systems for water pumping in Saudi Arabia. International Journal of Green Energy 2015; 12 (7): 702-713. doi: 10.1080/15435075.2014.884498
  • [14] Sahin AZ, Rehman S. Economical feasibility of utilizing photovoltaics for water pumping in Saudi Arabia.International Journal of Photoenergy 2012; 2012: 9. doi: 10.1155/2012/542416.
  • [15] Rehman S, Shash AA, Al-Amoudi OSB. Photovoltaic technology of electricity generation for desert camping. International Journal of Global Energy Issues 2006; 26 (3/4): 322-340. doi: 10.1504/IJGEI.2006.011262
  • [16] Rehman S, Halawani TO. Development and utilization of solar energy in Saudi Arabia–review. Arabian Journal for Science and Engineering 1998; 23 (1B): 33-46.
  • [17] Rehman S, Sahin AZ. A wind-solar PV hybrid power system with battery backup for water pumping in remote localities. International Journal of Green Energy 2016; 13 (11): 1075-1083. doi: 10.1080/15435075.2012.729169
  • [18] Rehman SU, Rehman S, Qazi MU, Shoaib M, Lashin A. Feasibility study of hybrid energy system for offgrid rural electrification in southern Pakistan. Energy Exploration and Exploitation 2016; 34 (3): 468-482. doi: 10.1177/0144598716630176
  • [19] Rehman S, El-Amin I. Study of a solar pv/wind/diesel hybrid power system for a remotely located population near Arar, Saudi Arabia. Energy Exploration and Exploitation 2015; 33 (4): 591-620. doi: 10.1260/0144-5987.33.4.591
  • [20] Rehman S, Alam MM, Meyer JP, Al-Hadhrami LM. Feasibility study of a wind–pv–diesel hybrid power system for a village. Renewable Energy 2012; 38 (1): 258-268. doi: 10.1016/j.renene.2011.06.028
  • [21] Rehman S, Al-Hadhrami LM. Study of a solar PV–diesel–battery hybrid power system for a remotely located population near Rafha, Saudi Arabia. Energy 2010; 35 (12): 4986-4995. doi: 10.1016/j.energy.2010.08.025
  • [22] Rehman S, El-Amin IM, Ahmad F, Shaahid SM, Al-Shehri AM et al. Feasibility study of hybrid retrofits to an isolated off-grid diesel power plant. Renewable and Sustainable Energy Reviews 2007; 11 (4): 635-653. doi: 10.1016/j.rser.2005.05.003
  • [23] Isikwue BC, Amah AN, Agada PO. Empirical model for the estimation of global solar radiation in Makurdi, Nigeria. Global Journal of Science Frontier Research Physics and Space Science 2012; 12 (1): 59-61.
  • [24] Gungor A, Yildirim U. Global solar radiation estimation using sunshine duration in Nigde. In: 16th International Research/Expert Conference, 2012 Trends in the Development of Machinery and Associated Technology; Dubai, UAE; 2012. pp. 327-330.
  • [25] Wansah JF, Udounwa AE, Mee AU, Emah JB. Comparison of sunshine based models for estimating global solar radiation in Uyo, Nigeria. New York Science Journal 2014; 7 (12): 60-65.
  • [26] Trabea AA, Shaltout MM. Correlation of global solar radiation with meteorological parameters over Egypt. Renewable Energy 2000; 21 (2): 297-308. doi: 10.1016/S0960-1481(99)00127-5
  • [27] Habbib EA. Empirical models for solar radiation estimation by some weather data for Baghdad City. AlMustansiriyah Journal of Science 2011; 22 (2): 177-184.
  • [28] Khan MM, Ahmad MJ. Estimation of global solar radiation using clear sky radiation in Yemen. Journal of Engineering Science and Technology Review 2012; 5 (2): 12-19.
  • [29] Al-Dulaimy FMA. A correlative measurement of an hourly record of solar radiation and climatological parameters. Tikrit Journal of Engineering Sciences 2013; 20 (2): 13-28.
  • [30] Alsamamra H. Statistical approach for modeling of daily global solar radiation on horizontal surfaces over Hebron city, Palestine. Journal of Technology Innovations in Renewable Energy 2013; 2 (1): 60-66.
  • [31] Panday CK, Katiyar AK. Temperature base correlation for the estimation of global solar radiation on horizontal surface. International Journal of Energy and Environment 2010; 1 (4): 737-744.
  • [32] El-Sebaii AA, Trabea AA. Estimation of global solar radiation on horizontal surfaces over Egypt. Egyptian Journal of Solids 2005; 28 (1): 163-175.
  • [33] Akpabio LE, Udo SO, Etuk SE. Modeling global solar radiation for a tropical location: Onne, Nigeria. Turkish Journal of Physics 2005; 29 (29): 63-68.
  • [34] Muzathik AM, Nik WMNW, Samo K, Ibrahim MZ. Hourly global solar radiation estimates on a horizontal plane. Journal of Physical Science 2010; 21 (2): 51-66.
  • [35] Ahmed EA, Adam MEN. Estimate of global solar radiation by using artificial neural network in Qena, Upper Egypt. Journal of Clean Energy Technologies 2013; 1 (2): 148-150.
  • [36] Mohandes MA, Rehman S. Estimation of sunshine duration in Saudi Arabia. Journal of Renewable and Sustainable Energy 2013; 5 (3): 033128. doi: 10.1063/1.4811284
  • [37] Mohandes M, Rehman S. Global solar radiation maps of Saudi Arabia. Journal of Energy and Power Engineering 2010; 4 (12): 57-63.
  • [38] Mohandes M, Rehman S, Halawani TO. Estimation of global solar radiation using artificial neural networks. Renewable Energy 1998; 14 (1-4): 179-184. doi: 10.1016/S0960-1481(98)00065-2
  • [39] Rehman S, Mohandes M. Splitting global solar radiation into diffuse and direct normal fractions using artificial neural networks. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2012; 34 (14): 1326-1336. doi: 10.1080/15567031003792403
  • [40] Rehman S, Ghori SG. Spatial estimation of global solar radiation using geostatistics. Renewable Energy 2000; 21 (3-4): 583-605. doi: 10.1016/S0960-1481(00)00078-1
  • [41] Rehman S. Empirical model development and comparison with existing correlations. Applied Energy 1999; 64 (1-4): 369-378. doi: 10.1016/s0306-2619(99)00108-7
  • [42] Rehman S. Solar radiation over Saudi Arabia and comparisons with empirical models. Energy 1998; 23 (12): 1077- 1082. doi: 10.1016/S0360-5442(98)00057-7
  • [43] Rehman S, Halawani TO. Global solar radiation estimation. Renewable Energy 1997; 12 (4): 369-385. doi: 10.1016/S0960-1481(97)00057-8
  • [44] Okogbue EC, Adedokun JA, Holmgren B. Hourly and daily clearness index and diffuse fraction at a tropical station, Ile-Ife, Nigeria. International Journal of Climatology 2009; 29 (8): 1035-1047. doi: doi.org/10.1002/joc.1849
  • [45] Kheradmanda S, Nematollahi O, Ayoobia AR. Clearness index predicting using an integrated artificial neural network (ANN) approach. Renewable and Sustainable Energy Reviews 2016; 58 (C): 1357-1365. doi: 10.1016/j.rser.2015.12.240
  • [46] Dervishi S, Mahdavi A. Computing diffuse fraction of global horizontal solar radiation: a model comparison. Solar Energy 2012; 86 (6): 1796-1802. doi: 10.1016/j.solener.2012.03.008
  • [47] Kuye A, Jagtap SS. Analysis of solar radiation data for Port Harcourt, Nigeria. Solar Energy 1992; 49 (2): 139-145. doi: 10.1016/0038-092X(92)90148-4
  • [48] Waleed I. Empirical models for the correlation of clearness index with meteorological parameters in Iraq. IOSR Journal of Engineering 2014; 4 (3): 12-18.
  • [49] Mellit A, Arab AH, Shaari S. An ANFIS-based prediction for monthly clearness index and daily solar radiation: application for sizing of a stand-alone Photovoltaic system. Journal of Physical Science 2007; 18 (2): 15-35.
  • [50] Al-Lawati A, Dorvlo AS, Jervase JA. Monthly average daily solar radiation and clearness index contour maps over Oman. Energy Conversion and Management 2003; 44 (5): 691-705. doi: 10.1016/S0196-8904(02)00080-8
  • [51] Waewsak J, Chancham C. The clearness index model for estimation of global solar radiation in Thailand. Thammasat International Journal of Science and Technology 2010; 15 (2): 54-61.
  • [52] Hollands KGT. A derivation of the diffuse fraction’s dependence on the clearness index. Solar Energy 1985; 35 (2): 131-136. doi: 10.1016/0038-092X(85)90003-9
  • [53] Ahmad F, Burney SA, Husain SA. Diffuse solar radiation estimates from sunshine hours and clearness index for Karachi, Pakistan. Energy Conversion and Management 1990; 30 (4): 439-447. doi: 10.1016/0196-8904(90)90045-Z
  • [54] Duffie JA, Beckman WA. Solar Engineering of Thermal Processes, Fourth Edition. Hoboken, NJ, USA: Wiley, 2013.
  • [55] Angstrom A. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Quarterly Journal of the Royal Meteorological Society 1924; 50 (210): 121-126. doi: 10.1002/qj.49705021008
  • [56] Prescott JA. Evaporation from a water surface in relation to solar radiation. Transactions of the Royal Society of South Australia 1940; 64: 114-118.
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

A depth-based nearest neighbor algorithm for high-dimensional data classification

Ramachandra KAIMAL, Sandhya HARIKUMAR, Akhil ARAVINDAKSHAN SAVITHRI

A new approach for wind turbine placement problem using modified differential evolution algorithm

Hüseyin HAKLI

On the output regulation for linear fractional systems

Mario Ricardo CRUZ-DEVIANA, Jesus Alberto MEDA-CAMPAÑA, Julio Cesar GÓMEZ-MANCILLA, Ricardo TAPIA-HERRERA, Jose de Jesus RUBIO, Elba Cinthya GARCÍA-ESTRADA

Possible effects of dielectrophoretic fields in the brains of MRI operators and MS patients: a radiologically isolated syndrome evaluation

Cahit CANBAY

Comparative evaluation of a-b-c and stationary frame of reference for permanent magnet brushless DC motor drive applied for generation of switching pattern

Ritesh KESHRI, Manish TRIVEDI

NVRH-LUT: A nonvolatile radiation-hardened hybrid MTJ/CMOS-based look-up table for ultralow power and highly reliable FPGA designs

Vahid JAMSHIDI

Improving word embeddings projection for Turkish hypernym extraction

Savaş YILDIRIM

Decoupling network for Tx/Rx body coil for 7T MRI

Ashraf ABUELHAIJA, Sana SALAMH, Osama NASHWAN

Global maximum operating point tracking for PV system using fast convergence firefly algorithm

Sankar SELVAKUMAR, Chandrasekaran KOODALSAMY, Madhusmita MOHANTY, Sishajpulikottil SIMON

A crowdsensing-based framework for urban air quality decision support

Hasna EL ALAOUI EL ABDALLAOUI, Abdelaziz EL FAZZIKI, Mohamed SADGAL, Fatima Zohra ENNAJI, Jamal OUARZAZI