Electronically tunable grounded/floating inductance simulators using Z-copy CFCCC

Electronically tunable grounded/floating inductance simulators using Z-copy CFCCC

In this paper, new electronically tunable grounded and floating inductance simulators employing a Zcopy current follower current controlled conveyor (CFCCC) and one grounded capacitor have been proposed and theirworkability has been demonstrated by PSPICE simulations in 0.18-µm TSMC CMOS technology.

___

  • [1] Biolek D, Senani R, Biolkova V, Kolka Z. Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 2008; 17: 15-32.
  • [2] Acar C, Ozoguz S. A new versatile building block: current differencing buffered amplifier suitable for analog signal processing filters. Microelectr J 1999; 30: 157-160.
  • [3] Jaikla W, Siripruchyanun M, Lahiri A. Resistorless dual-mode quadrature sinusoidal oscillator using a single active building block. Microelectr J 2011; 42: 135-146.
  • [4] Channumsin O, Pukkalanun T, Tangsritat W. Voltage-mode universal filter with one input and five outputs using DDCCTA and all grounded passive components. Microelectr J 2012; 43: 555-561.
  • [5] Tangsritat W, Channumsin O, Pukkalanun T. Resistorless realization of electronically tunable voltage-mode SIFOtype universal filter. Microelectr J 2013; 44: 210-215.
  • [6] Chen HC, Wang JM. Dual mode resistorless sinusoidal oscillator using single CCCDTA. Microelectr J 2013; 44: 216-224.
  • [7] Nie XZ. Multiple-input-single-output and high output impedance current mode biquadratic filter employing five modified CFTAs and two grounded capacitors. Microelectr J 2013; 44: 802-806.
  • [8] Channumsin O, Tangsritat W. Single input four output voltage mode universal filter using DDCCTA. Microelectr J 2013; 44: 1084-1091.
  • [9] Biolek D, Lahiri A, Jaikla W, Bajer J. Realization of electronically tunable voltage-mode/current-mode quadrature sinusoidal oscillator using ZC-CG-CDBA. Microelectr J 2011; 42: 1116-1123.
  • [10] Chien HC, Chen YC. CMOS realization of single resistance controlled and variable frequency dual mode sinusoidal oscillators employing a single DVCCTA with all grounded passive elements. Microelectr J 2014; 45: 226-238.
  • [11] Cam U, Kacar F, Cicekoglu O, Kuntman H, Kuntman A. Two OTRA-based grounded immittance simulator topologies. Analog Integr Circ S 2004; 39: 169-175.
  • [12] Pandey R, Pandey N, Paul SK, Singh A, Sriram B, Trivedi K. Novel grounded inductance simulator using single OTRA. Int J Circ Theor App 2014; 42: 1069-1079.
  • [13] Horng J. Lossless inductance simulation and voltage-mode universal biquadratic filter with one input and five outputs using DVCCs. Analog Integr Circ S 2010; 62: 407-413.
  • [14] Keskin AU, Hancioglu E. CDBA-based synthetic floating inductance circuits with electronic tuning properties. ¨ ETRI J 2005; 27: 239-242.
  • [15] Prasad D, Bhaskar DR, Singh AK. New grounded and floating simulated inductance circuits using current differencing transconductance amplifiers. Radioengineering 2010; 19: 194-198.
  • [16] Prasad D, Bhaskar DR, Pushkar KL. Realization of new electronically controllable grounded and floating simulated inductance circuits using voltage differencing differential input buffered amplifiers. Act Passiv Electron Components 2011; 2011: 101432.
  • [17] Bhaskar DR, Prasad D, Pushkar KL. Electronically-controllable grounded-capacitor-based grounded and floating inductance simulated circuits using VD-DIBAs. Circuits and Systems 2013; 4: 422-430.
  • [18] Prasad D, Bhaskar DR. Grounded and floating inductance simulation circuits using VDTAs. Circuits and Systems 2012; 3: 342-347.
  • [19] Guney A, Kuntman H. New floating inductance simulator employing a single ZC-VDTA and one grounded capacitor. In: 9th IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era; 2014: Santorini, Greece. New York, NY, USA: IEEE. pp. 9-10.
  • [20] Ka¸car F, Ye¸sil A, Minaei S, Kuntman H. Positive/negative lossy/lossless grounded inductance simulators employing single VDCC and only two passive elements. AEU-Int J Electron C 2014; 68: 73-78.
  • [21] Prasad D, Ahmad J. New electronically controllable lossless synthetic floating inductance circuit using single VDCC. Circuits and Systems 2014; 5: 13-17.
  • [22] Ye¸sil A, Ka¸car F, G¨urkan K. Lossless grounded inductance simulator employing single VDBA and its experimental band-pass filter application. AEU-Int J Electron C 2014; 68: 143-150.
  • [23] Siripruchyanun M, Silapan P, Jaikla W. Realization of CMOS current controlled current conveyor transconductance amplifier (CCCCTA) and its applications. Active and Passive Electronic Devices Journal 2004; 4: 35-53.
  • [24] Siripruchyanun M, Jaikla W.CMOS current-controlled current differencing transconductance amplifier and applications to analog signal processing. AEU-Int J Electron C 2008; 62: 277-287.
  • [25] Siripruchyanun M, Jaikla W. Current-controlled current differencing transconductance amplifier and applications in continuous-time signal processing circuits. Analog Integr Circ S 2009; 61: 247-257.
  • [26] Siripruchyanun M, Chanapromma C, Silapan P, Jaikla W. BiCMOS current-controlled current feedback amplifier (CC-CFA) and its applications. WSEAS Trans Electron 2008; 5: 203-219.
  • [27] Li YA. A series of new circuits based on CFTAs. AEU - Int J Electron C 2012; 66: 587-592.
  • [28] Siriphot D, Maneewan S, Jaikla W. Single active element based electronically controllable grounded inductor simulator. In: IEEE 6th Biomedical Engineering International Conference; 23–25 October 2013; Krabi, Thialand. New York, NY, USA: IEEE. pp. 1-4.
  • [29] Ayten UE, Sagbas M, Herencsar N, Koton J. Novel floating general element simulators using CBTA. Radioengineering 2012; 21: 11-19.
  • [30] Senani R, Bhaskar DR. New lossy/loss-less synthetic floating inductance configuration realized with only two CFOAs. Analog Integr Circ S 2012; 73: 981-986.
  • [31] Ka¸car F, Ismail A, Kuntman H. New CMOS realization of current differencing current conveyor (CDCC) with biquad filter application. In: 5th IEEE Latin America Symposium on Circuits and Systems; 25–28 February 2014; Santiago, Chile. New York, NY, USA: IEEE. pp. 1-4.
  • [32] Ka¸car F, Kuntman H, Kuntman A. Grounded inductance simulator topologies realization with single current differencing current conveyor. In: IEEE 22nd European Conference on Circuit Theory and Design; 24–26 August 2015; Trondheim, Norway. New York, NY, USA: IEEE. pp. 1-4.
  • [33] Singh AK, Kumar P. A novel fully differential current mode universal filter. In: IEEE 57th International Midwest Symposium on Circuits and Systems; 3–6 August 2014; College Station, TX, USA. New York, NY, USA: IEEE. pp. 579-582.
  • [34] Wang HY, Lee CT. Systematic synthesis of R-L and C-D immittances using single CCIII. Int J Electron 2000; 87: 293-301.
  • [35] Yuce E, Minaei S, Cicekoglu O. Limitations of the simulated inductors based on a single current conveyor. IEEE T Circuits Syst-I 2006; 53: 2860-2867.
  • [36] Kuntman H, Gulsoy M, Cicekoglu O. Actively simulated grounded lossy inductors using third generation current conveyors. Microelectr J 2000; 31: 245-250.
  • [37] Incekaraoglu M, Cam U. Realization of series and parallel R-L and C-D impedances using single differential voltage current conveyor. Analog Integr Circ S 2005; 43: 101-104.
  • [38] Liu SI, Hwang YS. Realization of R-L and C-D impedances using a current feedback amplifier and its applications. Electron Lett 1994; 30: 380-381.
  • [39] Cicekoglu O. Precise simulation of immittance functions using the CFOA. Microelectr J 1998; 29: 973-975.
  • [40] Kacar F, Kuntman H. CFOA-based lossless and lossy inductance simulators. Radioengineering 2011; 20: 627-63.
  • [41] Abuelma’atti MT. New grounded immittance function simulators using single current feedback operational amplifier. Analog Integr Circ S 2012; 71: 95-100.
  • [42] Wang HY, Lee CT. Realization of R-L and C-D immittances using single FTFN. Electron Lett 1998; 34: 502-503.
  • [43] Cam U, Kacar F, Cicekoglu O, Kuntman H, Kuntman A. Novel grounded parallel immittance simulator topologies employing single OTRA. AEU - Int J Electron C 2003; 57: 287-290.
  • [44] Gulsoy M, Cicekoglu O. Lossless and lossy synthetic inductors employing single current differencing buffered amplifier. IEICE Trans Commun 2005; E88B: 2152-2155.
  • [45] Yuce E. On the implementation of the floating simulators employing a single active device. AEU - Int J Electron C 2007; 61: 453-458.
  • [46] Yuce E. Novel lossless and lossy grounded inductor simulators consisting of a canonical number of components. Analog Integr Circ S 2009; 59: 77-82.
  • [47] Alpaslan H, Yuce E. Inverting CFOA based lossless and lossy grounded inductor simulators. Circ Syst Signal Pr 2015; 34: 3081-3100.
  • [48] Yuce E, Minaei S, Cicekoglu O. A novel grounded inductor realization using a minimum number of active and passive components. ETRI J 2005; 27: 427-432.
  • [49] Yuce E. On the realization of the floating simulators using only grounded passive components. Analog Integr Circ S 2006; 49: 161-166.
  • [50] Yuce E, Cicekoglu O, Minaei S. Novel floating inductance and FDNR simulators employing CCII+ s. J Circuit Syst Comp 2006; 15: 75-81.
  • [51] Hou CL, Wang WY. Realization of floating immittance function simulators using CCII+. Microelectr J 1998; 29: 59-63.
  • [52] Senani R, Bhaskar DR, Singh AK. Current Conveyors: Variants, Applications and Hardware Implementations. Berlin, Germany: Springer International Publishing, 2015.