Efficient features for smartphone-based iris recognition

Efficient features for smartphone-based iris recognition

Iris recognition has widely been used in personal authentication problems. Recent advances in iris recognitionthrough visible wavelength images have paved the way for the use of this technology in smartphones. Smartphone-based iris recognition can be of significant use in financial transactions and secure storage of sensitive information. This paper presents a hybrid representation scheme for iris recognition in mobile devices. The scheme is called hybrid because it firstly makes use of Gabor wavelets to reveal the texture present in the normalized iris images, and then extracts statistical features from different partitions of Gabor-processed images. The standard mobile-iris database, called MICHE, is used for investigating the performance of the proposed approach. The comparison of the proposed approach with other widespread iris recognition approaches proves its efficacy

___

  • [1] Daugman JG. High confidence visual recognition of persons by a test of statistical independence. IEEE T Pattern Anal 1993; 15: 1148-1161.
  • [2] Daugman J. Iris recognition at airports and border crossings. In: Li SZ, Jain AK, editors. Encyclopedia of Biometrics. Boston, MA, USA: Springer; 2015. pp. 998-1004.
  • [3] Abdullah MAM, Al-Nima RR, Dlay SS, Woo WL, Chambers JA. Cross-spectral iris matching for surveillance applications. In: Karampelas P, Bourlai, T, editors. Surveillance in Action, Advanced Sciences and Technologies for Security Applications. Cham, Cham, Switzerland: Springer; 2018. pp. 105-125.
  • [4] Jain AK, Ross A, Prabhakar S. An introduction to biometric recognition. IEEE T Circ Syst Vid 2004; 14: 4-20.
  • [5] Bowyer KW, Hollingsworth K, Flynn PJ. Image understanding for iris biometrics: a survey. Comput Vis Image Und 2008; 110: 281-307.
  • [6] Basit A, Javed MY. Localization of iris in gray scale images using intensity gradient. Opt Laser Eng 2007; 45: 1107-1114.
  • [7] Wildes RP, Asmuth JC, Green GL, Hsu SC, Kolczynski RJ, Matey JR, McBride SE. A system for automated iris recognition. In: Proceedings of the Second IEEE Workshop on Applications of Computer Vision; 5-7 Dec 1994; Sarasota, FL, USA. New York, NY, USA: IEEE. pp. 121-128.
  • [8] Flom L, Safir A. Iris recognition system, US Pat 4,641,349. 1987.
  • [9] Masek L, Kovesi P. MATLAB source code for a biometric identification system based on iris patterns. The School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia, 2003.
  • [10] Ganeshan B, Theckedath D, Young R, Chatwin C. Biometric iris recognition system using a fast and robust iris localization and alignment procedure. Opt Laser Eng 2006; 44: 1-24.
  • [11] Monro DM, Rakshit S, Zhang D. DCT-based iris recognition. IEEE T Pattern Anal 2007; 29: 586-595.
  • [12] Miyazawa K, Ito K, Aoki T, Kobayashi K, Nakajima H. An effective approach for iris recognition using phase-based image matching. IEEE T Pattern Anal 2008; 30: 1741-1756.
  • [13] Rai H, Yadav A. Iris recognition using combined support vector machine and Hamming distance approach. Expert Syst Appl 2014; 41: 588-593.
  • [14] Tan C-W, Kumar A. Efficient and accurate at-a-distance iris recognition using geometric key-based iris encoding. IEEE T Inf Forensics 2014; 9: 1518-1526.
  • [15] Tan C-W, Kumar A. Accurate iris recognition at a distance using stabilized iris encoding and Zernike moments phase features. IEEE T Image Process 2014; 23: 3962-3974.
  • [16] Bhateja AK, Sharma S, Chaudhury S, Agrawal N. Iris recognition based on sparse representation and k-nearest subspace with genetic algorithm. Pattern Recogn Lett. 2015; 73: 13-18.
  • [17] Umer S, Dhara BC, Chanda B. Iris recognition using multiscale morphologic features. Pattern Recogn Lett 2015; 65: 67-74.
  • [18] Vyas R, Kanumuri T, Sheoran G. Iris recognition using 2-D Gabor filter and XOR-SUM code. In: 2016 1st India International Conference on Information Processing; 12-14 Aug 2016; Delhi, India: IEEE. pp. 1-5.
  • [19] Bansal M, Hanmandlu M, Kumar P. Iris based authentication using local principal independent components. Optik 2016; 127: 4808-4814.
  • [20] Subban R, Susitha N, Mankame DP. Efficient iris recognition using Haralick features based extraction and fuzzy particle swarm optimization. Cluster Comput. 2017; 21: 1-12.
  • [21] Bansal A, Agarwal R, Sharma RK. Statistical feature extraction based iris recognition system. Sādhanā 2016; 41: 507-518.
  • [22] Poornima S, Subramanian S. Unconstrained iris authentication through fusion of RGB channel information. Int J Pattern Recogn 2014; 28: 1456010-1-18.
  • [23] Hamouchene I, Aouat S. Efficient approach for iris recognition. Signal Image Video P 2016; 10: 1361-1367.
  • [24] Vyas R, Kanumuri T, Sheoran G, Dubey P. Co-occurrence features and neural network classification approach for iris recognition. In: 2017 Fourth International Conference on Image Information Processing; 21-23 Dec 2017; Solan, India: IEEE. pp. 1-6.
  • [25] De Marsico M, Nappi M, Riccio D, Wechsler H. Mobile Iris Challenge Evaluation (MICHE)-I, biometric iris dataset and protocols. Pattern Recogn Lett 2015; 57: 17-23.
  • [26] De Marsico M, Nappi M, Proença H. Results from MICHE II – mobile iris challenge evaluation II. Pattern Recogn Lett 2017; 91: 3-10.
  • [27] Abate AF, Barra S, Gallo L, Narducci F. Kurtosis and skewness at pixel level as input for SOM networks to iris recognition on mobile devices. Pattern Recogn Lett 2017; 91: 37-43.
  • [28] Barra S, Casanova A, Narducci F, Ricciardi S. Ubiquitous iris recognition by means of mobile devices. Pattern Recogn Lett 2015; 57: 66-73.
  • [29] Galdi C, Nappi M, Dugelay JL. Multimodal authentication on smartphones: Combining iris and sensor recognition for a double check of user identity. Pattern Recogn Lett 2016; 82: 144-153.
  • [30] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 8-14 Dec 2001; Kauai, HI, USA: IEEE. pp. 511-518.
  • [31] Viola P, Jones M. Robust real-time face detection. Int J Comput Vision 2004; 57: 137-154.
  • [32] Zhao Z, Kumar A. An accurate iris segmentation framework under relaxed imaging constraints using total variation model. In: IEEE International Conference on Computer Vision; 7-13 Dec. 2015; Santiago, Chile. New York, NY, USA: IEEE. pp. 3828-3836.
  • [33] Brainard DH, Wandell BA. Analysis of the retinex theory of color vision. J Opt Soc Am A. 1986; 3: 1651-1661.
  • [34] Wildes RP. Iris recognition: an emerging biometric technology. P IEEE 1997; 85: 1348-1363.
  • [35] Daugman J. The importance of being random: statistical principles of iris recognition. Pattern Recogn 2003; 36: 279-291.
  • [36] Arivazhagan S, Ganesan L, Priyal SP. Texture classification using Gabor wavelets based rotation invariant features. Pattern Recogn Lett 2006; 27: 1976-1982.
  • [37] Tan C-W, Kumar A. Unified framework for automated iris acquired face images. IEEE T Image Process 2012; 21: 4068-4079.