Invisible watermarking framework that authenticates and prevents the visualization of anaglyph images for copyright protection

Invisible watermarking framework that authenticates and prevents the visualization of anaglyph images for copyright protection

In this work, a watermarking framework to authenticate and protect the copyright that prevents thevisualization of nonauthorized anaglyph images is proposed. Designed scheme embeds a binary watermark and the Blue channel of the anaglyph image into the discrete cosine transform domain of the original image. The proposed method applies the quantization index modulation-dither modulation algorithm and a combination of Bose–Chaudhuri– Hocquenghem with repetition codes, which permit to increase the capability in recovering the watermark. Additionally, Hash algorithm is used to scramble the component where the watermark should be embedding, guaranteeing a higher security performance of the scheme. This new technique prevents the visualization of 3D content to unauthorized users. Additionally, its high robustness against the most common image processing attacks, such as JPEG compression, impulsive and Gaussian noises, etc. has been demonstrated in this study.

___

  • [1] Zone R. 3-D Revolution: The History of Modern Stereoscopic Cinema. Lexington, KY, USA: University Press of Kentucky, 2012.
  • [2] Babaei M, Makhzani N, Wong CO, Peng LY. Anaglyph view of kinect 3D stream capture. In: IEEE 2013 International Conference Informatics and Creative Multimedia; Kuala Lumpur, Malaysia; 2013. pp. 110-113.
  • [3] Rojas GM, Gálvez M, Potler NV, Craddock CR, Margulies DS et al. Stereoscopic three-dimensional visualization applied to multimodal brain images: Clinical applications and a functional connectivity atlas. Frontiers in Neuroscience 2014; 8 (328): 1-14. doi: 10.3389/fnins.2014.00328
  • [4] Nin J, Ricciardi S. Digital watermarking techniques and security issues in the information and communication society. In: IEEE 2013 27th 2013 27th International Conference on Advanced Information Networking and Applications Workshops; Barcelona, Catalonia, Spain; 2013. pp. 1553-1558.
  • [5] Khorsnad-Movaghar R, Khaleghi-Bizaki H. A new approach for digital image watermarking to predict optimal blocks using artificial neural networks. Turkish Journal of Electrical Engineering and Computer Sciences 2017; 25: 644-654. doi: 10.3906/elk-1507-232.
  • [6] Tao H, Chongmin L, Zain JM, Abdalla AN. Robust image watermarking theories and techniques: A review. Journal of Applied Research and Technology 2014; 12(1): 122-138. doi: 10.1016/S1665-6423(14)71612-8
  • [7] Prashanti G, Sandhyarani K. A new approach for data hiding with LSB steganography. In: Emerging ICT for Bridging the Future - Proceedings of the 49th Annual Convention of the Computer Society of India CSI; Hyderabad, Telangana, India; 2015. pp. 423-430.
  • [8] Varghese J, Subash S, Bin Hussain O, Nallaperumal K, Ramadan Saady M et al. An improved digital image watermarking scheme using the discrete Fourier transform and singular value decomposition. Turkish Journal of Electrical Engineering and Computer Sciences 2016; 24(5): 3432-3447. doi: 10.3906/elk-1409-12.
  • [9] Jane O, Elbasi E. A new approach of nonblind watermarking methods based on DWT and SVD via LU decomposition. Turkish Journal of Electrical Engineering and Computer Sciences 2014; 22(5): 1354-1366. doi: 10.3906/elk1212-75
  • [10] Chen B, Wornell GW. Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Transactions on Information Theory 2001; 47(4): 1423-1443. doi: 10.1109/18.923725
  • [11] Phadikar A. Multibit quantization index modulation: a high-rate robust data-hiding method. Journal of King Saud University - Computer and Information Sciences 2013; 25(2): 163-171. doi: 10.1016/J.JKSUCI.2012.11.005
  • [12] Jiang Y, Zhang Y, Pei W, Wang K. Adaptive spread transform QIM watermarking algorithm based on improved perceptual models. AEU - International Journal of Electronics and Communications 2013; 67(8): 690-696. doi: 10.1016/J.AEUE.2013.02.005.
  • [13] Mitekin V, Fedoseev V. A new QIM-based watermarking algorithm robust against multi-image histogram attack. Procedia Engineering 2017; 201: 453-462. doi: 10.1016/J.PROENG.2017.09.687
  • [14] An XC, Ni RR, Zhao Y. Visible watermarking for 3D models based on boundary adaptation and mesh subdivision. Journal of Applied Sciences 2016; 34(5): 503-514. doi: 10.3969/j.issn.0255-8297.2016.05.003
  • [15] Hung-Kuang C, Wei-Sung C. GPU-accelerated blind and robust 3D mesh watermarking by geometry image. Multimedia Tools and Applications 2016; 75(16): 10077-10096. doi: 10.1007/s11042-015-3062-y
  • [16] Cui C, Niu XM. A robust DIBR 3D image watermarking algorithm based on histogram shape. Journal of the International Measurement Confederation 2016; 92: 130-143. doi: 10.1016/j.measurement.2016.05.079
  • [17] Cui C, Wang S, Niu X. A novel watermarking for DIBR 3D images with geometric rectification based on feature points. Multimedia Tools and Applications 2017; 76(1): 649-677. doi: 10.1007/s11042-015-3028-0
  • [18] Al-Haj A, Farfoura ME, Mohammad A. Transform-based watermarking of 3D depth-image-based-rendering images. Journal of the International Measurement Confederation 2017; 95: 405-417. doi: 10.1016/j.measurement.2016.10.016
  • [19] Yang WC, Chen LH. Reversible DCT-based data hiding in stereo images. Multimedia Tools and Applications 2015; 74(17): 7181-7193. doi: 10.1007/s11042-014-1958-6.
  • [20] Ou ZH, Chen LH. A robust watermarking method for stereo-pair images based on unmatched block bitmap. Multimedia Tools and Applications 2016; 75(6): 3259-3280. doi: 10.1007/s11042-014-2433-0
  • [21] Luo T, Jiang G, Yu M, Xu H. Asymmetric self-recovery oriented stereo image watermarking method for three dimensional video system. Multimedia Systems 2016; 22(5): 641-655. doi: 10.1007/s00530-015-0475-4
  • [22] Smolic A, Mueller K, Stefanoski N, Ostermann J, Gotchev A et al. Coding Algorithms for 3DTV: A survey. IEEE Transactions on Circuits and Systems for Video Technology 2007; 17(11): 1606-1621. doi: 10.1109/TCSVT.2007.909972
  • [23] Deng H, Zhang J, Chen L, Wang R. A 3D model watermarking algorithm resistant to affine transformation. In: Proceedings - 4th International Conference on Multimedia and Security, MINES; Nanjing, Jiangsu, China; 2012. pp. 549-551.
  • [24] Garcia E, Dugelay JL. Texture-based watermarking of 3D video objects, IEEE Transactions on Circuits and Systems for Video Technology 2003; 13(8): 853-866. doi: 10.1109/TCSVT.2003.815963
  • [25] Bhatnagar G, Wu J, Raman B. A robust security framework for 3D images. Journal of Visualization 2011; 14(1): 85-93. doi: 10.1007/s12650-010-0067-5
  • [26] Prathap I, Anitha R. Robust and blind watermarking scheme for three dimensional anaglyph images. Computers and Electrical Engineering 2014; 40(1): 51-58. doi: 10.1016/j.compeleceng.2013.11.005
  • [27] Wang C. Robust digital watermarking scheme of anaglyphic 3D for RGB color images. International Journal of Image Processing 2015; 9(3): 156-165.
  • [28] Rakesh Y, Krishna RS. Digital watermarked anaglyph 3D images using FrFT. International Journal of Emerging Trends & Technology in Computer Science 2015; 41(2): 77-80. doi: 10.14445/22312803/IJCTT-V41P113
  • [29] Devi HS, Singh KM. A robust and optimized 3D red-cyan anaglyph blind image watermarking in the DWT domain. Contemporary Engineering Sciences 2016; 9: 1575-1589. doi: 10.12988/ces.2016.69156
  • [30] Scharstein D, Hirschmüller H, Kitajima Y, Krathwohl G, Nešic N et al. High-resolution stereo datasets with subpixelaccurate ground truth. In: German Conference on Pattern Recognition (GCPR), Münster, Germany; 2014. pp. 31-42.
  • [31] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment from error visibility to structural similarity. IEEE Transactions on Image Processing 2004; 13(4): 600-612. doi: 10.1109/TIP.2003.819861
  • [32] Shao X, Johnson SG. Type-II/III DCT/DST algorithms with reduced number of arithmetic operations. Signal Processing 2008; 88(6): 1553-1564. doi: 10.1016/j.sigpro.2008.01.004
  • [33] Garcia-Salgado BP, Ponomaryov V, Robles-Gonzalez A, Sadovnychiy S. On the parallel classification system using hyperspectral images for remote sensing applications. In: SPIE Commercial + Scientific Sensing and Imaging, 2018, Orlando, FL, USA; 2018. pp. 10670-10682.
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK