Diagnosis of reverse osmosis desalination water system using bond graph approach

Diagnosis of reverse osmosis desalination water system using bond graph approach

Industrial systems have become quite complicated. It is therefore necessary to look for a reliable supervision system to properly treat the information and make the appropriate decision to stop the system or leave it in operation. Supervision of automated systems goes to the heart of the matter. This paper concerns the design of a new methodology for diagnosis based on bond graph modeling. We apply a diagnostic method by Luenberger observer using the bond graph approach on a desalination unit. Tests are carried out on the water input pressure delivered by the pump and the output flow rates of the reverse osmosis. This method will allow us to test normal and failure operations of an industrial system. The roles of diagnostic systems for industrial processes consist of detecting and locating faults, also called residues, that will affect these processes. In order to be effective, the diagnostic system should be robust for residue analysis and insensitive to false alarms. In this context, the development of the proposed method is described from the step of modeling to the step of generation of certain residues.

___

  • Broenink JF. 20-sim software for hierarchical bond-graph/block-diagram models. Sim Pract Theory 1999; 7: 481- 492.
  • Mandler JA. Modelling for control analysis and design in complex industrial separation and liquefaction processes. J Proc Cont 2000; 10: 167-175.
  • Robertson MW, Watters JC, Desphande PB, Assef JZ, Alatiqui I. Model based control for reverse osmosis desalination processes. Desalination 1996; 104: 59-68.
  • Mokheimer EMA, Sahin AZ, Al-Sharafi A, Ali AI. Modeling and optimization of hybrid wind–solar-powered reverse osmosis water desalination system in Saudi Arabia. Energy Convers Manage 2013; 75: 86-97.
  • Laborde HM, Fran¸ca KB, Neff H, Lima AMN. Optimization strategy for a small-scale reverse osmosis water desalination system based on solar energy. Desalination 2001; 133: 1-12.
  • Bartman AR, Christofides PD, Cohen Y. Nonlinear model-based control of an experimental reverse-osmosis water desalination system. Ind Eng Chem Res 2009; 48: 6126-6136.
  • Sourirajan S. Reverse osmosis: a new field of applied chemistry and chemical engineering. In: ACS Symposium Series (USA); 1981. pp. 153-154.
  • Lacey RE, Loeb S. Industrial Processing with Membranes. New York, NY, USA: Wiley-Interscience, 1972.
  • Rautenbach R, Albercht R. Membrane Processes. 1st ed. Oxford, UK: Wiley, 1989.
  • Merten U. Desalination by Reverse Osmosis. Cambridge, MA, USA: MIT Press, 1966.
  • Marino R, Scalzi S. Asymptotic sideslip angle and yaw rate decoupling control in four-wheel steering vehicles. Veh Syst Dyn 2010; 48: 999-1019.
  • Ouahi M, St´ephant J, Meizel D. Redefining automotive supervision using new sensor technology. In: Proceedings of the International Symposium on Advanced Vehicle Control; August 2010; Loughborough, UK.
  • Luenberger D. An introduction to observers. IEEE T Automat Contr 1971; 16: 596-602.
  • Pichardo-Almarza C, Rahmani A, Dauphin-Tanguy G, Delgado M. Luenberger observers for linear time invariant systems modelled by bond graph. Math Comp Model Dyn 2006; 12: 219-234.
  • Pichardo-Almarza C, Rahmani A, Dauphin-Tanguy G, Delgado M. High gain observers for nonlinear systems modelled by bond graphs. P I Mech Eng I-J Sys 2005; 219: 477-498.
  • Pichardo-Almarza C, Rahmani A, Dauphin-Tanguy G, Delgado M. Bond graph approach to build reduced order observers in linear time invariant systems. In: Proceedings of the 4th MATHMOD International Symposium on Mathematical Modelling; 2003.
  • Sueur C, Dauphin-Tanguy G. Bond graph approach for structural analysis of MIMO linear systems. J Franklin Inst 1991; 328: 55-70.
  • Roberts DW, Ballance DJ, Gawthrop PJ. Design and implementation of a bond graph observer for robot control. Cont Eng Pract 1995; 3: 1447-1457.
  • Gawthrop PJ, Smith LPS. Metamodelling: Bond Graphs and Dynamic Systems. London, UK: Prentice Hall International, 1996.
  • Costello DJ, Gawthrop P. Physical model-based control: experiments with a stirred-tank heater. Chem Eng Res Des 1997; 75: 361-370.
  • Karnopp D. Bond graphs in control: physical state variables and observers. J Franklin Inst 1979; 308: 221-234.
  • Azmani A, Dauphin-Tanguy G. ARCHER: A program for computer aided modelling and analysis. In: DauphinTanguy G, Breedveld P, editors. Bond Graphs for Engineers. Amsterdam, the Netherlands: Elsevier, 1992. pp. 263-278.
  • Tagina M. Application de la mod´elisation bond graph `a la surveillance des syst`emes complexes. PhD, Lille University, Lille, France, 1995 (in French).
  • Chalh Z, Frih A, Mrabti M, Alfidi M. Bond graph methodology for controllability of LTV systems International Journal of Modelling, Identification and Control 2015; 24: 257-265.
  • Frih A, Chalh Z, Mrabti M, Ouahi M, Alfidi M. La conception d’observateur d’un syst`eme m´ecanique dans le domaine d’automobile par l’approche graphique. In: X`eme Conf´erence Internationale: Conception et Production Int´egr´ees; December 2015; Tangier, Morocco (in French).
  • Ould Bouamama B, Dauphin-Tanguy G. Bond graph modelling: Base elements for energetics. Paris, France: Techniques de l’ing´enieur, 2006.
  • Dauphin-Tanguy G. Les bond graphs. Paris, France: Hermes Science Publications, 2000 (in French).
  • Karnopp D, Margolis D, Rosenberg R. System Dynamics: A Unified Approach. New York, NY, USA: Wiley, 1990.
  • Khedher A, Othman KB, Benrejeb M, Maquin D. Adaptive observer for fault estimation in nonlinear systems described by a Takagi-Sugeno model. In: 18th Mediterranean Conference on Control and Automation; 23–25 June 2010; Marrakech, Morocco. pp. 261-266.
  • Paynter HM. Analysis and Design of Engineering Systems. Boston, MA, USA: MIT Press, 1961.
  • St´ephant J, Charara A, Meizel D. Evaluation of a sliding mode observer for vehicle side slip angle. Cont Eng Pract 2007; 15: 803-812.
  • Baffet G, Charara A, Lechner D. Estimation of vehicle side slip, tire force and wheel cornering stiffness. Cont Eng Pract 2009; 17: 1255-1264.
  • Guerra RM, Luviano-Ju´arez A, Rinc´on-Pasaye JJ. Fault estimation using algebraic observers. In: Proceedings of the 2007 American Control Conference; 11–13 July 2007; New York City, NY, USA. pp. 438-442.
  • Luenberger D. Observers for multivariable systems. IEEE T Automat Contr 1966; 11: 190-197.