Ab initio study of the structural, electronic, and magnetic properties of Co2FeGa and Co2FeSi and their future contribution to the building of quantum devices

Ab initio study of the structural, electronic, and magnetic properties of Co2FeGa and Co2FeSi and their future contribution to the building of quantum devices

How small can an electronic device be and still function? How many atoms are needed for such device? At what point will the semiconductor fabrication technology be unable to construct anything smaller? These are common questions asked by researchers, and the answers indicate the short-term limitations on the use of semiconductor technology. When we reach these limitations, we can propose two methods to solve these problems: first, we could continue using semiconductor technology, alongside the development of new theories and techniques to counter quantum effects caused by the miniaturization of electronic devices like transistors and microprocessors. Second, we could exploit these quantum effects to invent a new generation of electronic devices. Doing that, we propose spintronics or the use of spin properties. Heusler compounds as cobalt base alloys (Co 2 YZ) present particular interest for spin electronics applications. In this paper, we present properties and results for two cobalt base alloys, Co 2FeGa and Co 2FeSi. These properties are interesting for the field of quantum computation. In the first part of this paper we introduce Moore’s law, which explains the major limits of semiconductor technology. Then we discuss the results of our calculations based on the use of density functional theory and the WIEN2K program. This is for the purpose of making new quantum devices.

___

  • Kandpal H, Fecher G, Felser C, Schönhense G. Correlation in the transition-metal-based Heusler compounds Co 2 MnSi and Co 2FeSi. Phys Rev B 2006; 73: 094422.
  • Kübler J, William A, Sommers C. Formation and coupling of magnetic moments in Heusler alloys. Phys Rev B 1983; 28: 1745-1755.
  • Pauling L. The nature of the interatomic forces in metals. Phys Rev 1938; 54: 899-904.
  • Slater J. The ferromagnetism of nickel. Phys Rev 1936; 49: 537-545.
  • Galanakis I, Dederichs PH, Papanikolaou N. Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Phys Rev B 2002; 66: 134428.
  • Fecher GH, Felser C, K¨ubler J. Understanding the trend in the Curie temperatures of Co 2 -based Heusler compounds: Ab initio calculations. Phys Rev B 2007; 76: 024414.
  • Wurmehl S, Fecher GH, Kandpal HC, Ksenofontov V, Felser C, Lin HJ. Investigation of Co 2FeSi: the Heusler compound with highest Curie temperature and magnetic moment. Appl Phys Lett 2006; 88: 032503.
  • Wurmehl S, Fecher GH, Kandpal HC, Ksenofontov V, Felser C, Lin HJ, Morais J. Properties of the quaternary half-metal-type Heusler alloy Co 2 Mn 1−x Fex Si. Phys Rev B 2006; 74: 104405.
  • Hehn M. Magnetisme et transport polarise en spin : de la couche mince aux dispositifs. Matiere Condens´ee. Nancy, France: Universit´e Henri Poincar´e, 2004.
  • Monkhorst HJ, Pack JD. Special points for Brillonin-zone integrations. Phys Rev B 1976; 13: 5188.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1997; 78: 1396.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996; 77: 3865.
  • Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 1992; 45: 13244.
  • Perdew JP, Wang Y. Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys Rev B 1986; 33: 8800.
  • Takeda T. Linear methods for fully relativistic energy-band calculations. J Phys F Met Phys 1979; 9: 815.
  • Loucks TL. The Augmented Plane Wave Method: A Guide to Performing Electronic Structure Calculations. New York, NY, USA: W.A. Benjamin, 1967.
  • Blaha P, Schwarz K, Madsen GK, Kvasnicka D, Luitz J, Schwarz K. WIEN2K: An augmented plane wave plus local orbitals program for calculating crystal properties. Vienna, Austria: Vienna Technical University, 2001.
  • Blaha P, Schwarz K, Sorantin P, Tricky S. First principle investigations on electronic, magnetic, thermodynamic, and transport properties of TlGdX2 (X = S, Se, Te). Comput Phys Commun 1990; 59: 399.
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev B 1964; 136: B864.
  • Belmeguenai M, Tuzcuoglu H, Ch´erif SM, Westerholt K, Chauveau T, Mazaleyrat F, Moch P. Cu 2 MnAl thin films grown onto sapphire and MgO substrates: exchange stiffness and magnetic anisotropy. Phys Status Solidi A 2013;210: 553-558.
  • Kallmayer M, Conca A, Jourdan M, Schneider H, Jakob G, Balke B, Gloskovski A, Elmers HJ. Correlation of local disorder and electronic properties in the Heusler alloy Co 2 Cr 0.6Fe 0.4 Al. J Phys D Appl Phys 2007; 40: 1539-1543.
  • Trudel S, Gaier O, Hamrle J, Hillebrands B. Magnetic anisotropy, exchange and damping in cobalt-based full-Heusler compounds: an experimental review. J Phys D Appl Phys 2010; 43: 193001.
  • Gabor MS, Tiusan C, Petrisor T, Petrisor T, Hehn M, Lu Y, Snoeck E. Structural defects analysis versus spin polarized tunneling in Co 2FeAl/MgO/CoFe magnetic tunnel junctions with thick MgO barriers. J Magn Magn Mater 2013; 347: 79-85.
  • Dreizler RM, Gross E, Parrandw R. Density Functional Theory: An Approach to the Quantum Many-Body Problem. Berlin, Germany: Springer-Verlag, 1990.
  • Muthukrishnan A, Stroud CR. Multi-valued logic gates for quantum computation. arXiv: quant-ph/0002033v2,2000.
  • Kodera T, Vanderwiel WG, Maruyama T, Hirayama Y, Tarucha S. Fabrication and characterization of quantum dot single electron spin resonance devices. In: Proceedings of the International Symposium on Mesoscopic Superconductivity and Spintronics — In the Light of Quantum Computation; 2004. pp. 445-450.
  • Awschalom D, Loss D, Samarth N. Semiconductor Spintronics and Quantum Computation. Berlin, Germany:Springer, 2002.
  • Slipko VA, Savran I, Pershin YV. Spontaneous emergence of a persistent spin helix from homogeneous spin polarization. Phys Rev B 2011; 83: 193302.
  • Blinder SM. Introduction to Quantum Mechanics: In Chemistry, Materials Science, and Biology. Amsterdam, the Netherlands: Elsevier, 2004.
  • Kuhn TS. The Structure of Scientific Revolutions. 3rd ed. Chicago, IL, USA: University of Chicago Press, 1996.
  • Doplicher S. The measurement process in local quantum theory and the EPR paradox. arXiv: 0908.0480v1, 2012.
  • Jacak L, Hawrylak P, Wojs A. Quantum Dots. Berlin, Germany: Springer, 1998.
  • Paz JP, Zurek WH. Environment-induced decoherence and the transition from quantum to classical. Lect Notes Phys 2002; 587: 77-148.
  • Rosgen B, Watrous J. The hardness of distinguishing mixed-state quantum computations. In: Proceedings of the 20th Annual Conference on Computational Complexity; 2005. pp. 344-354.
  • Zurek WH. Decoherence, einselection, and the quantum origins of the classical. Rev Mod Phys 2003; 75: 715
  • Cleve R, Palma G, Zeilinger A. An introduction to quantum complexity theory. In: Macchiavello C, Palma GM, Zeilinger A. Collected Papers on Quantum Computation and Quantum Information Theory. Singapore: World Scientific, 2000. pp. 103-127.
  • Jia P, Tian F, Fan S, He Q, Feng J, Yang S. A novel sensor array and classifier optimization method of electronic nose based on enhanced quantum-behaved particle swarm optimization. Sensor Rev 2014; 34: 304-311.
  • Urias J, Quinones D. House holder methods for quantum circuit design. Can J Phys 2015; 94: 150-158.
  • Bernstein E, Vazirani U. Quantum complexity theory. SIAM J Comput 1997; 26: 1411-1473.
  • Fenner S, Green F, Homer S, Zhang Y. Bounds on the power of constant-depth quantum circuits. In: Proceedings of the 15th International Symposium on Fundamentals of Computation Theory; 2005. pp. 44-55.
  • Abutaleb M. A new static differential design style for hybrid SET CMOS logic circuits. J Comput Electron 2015; 14: 329-340.
  • Nielsen M, Chuang I. Quantum Computation and Quantum Information. 2nd ed. New York, NY, USA: Cambridge University Press, 2010.
  • Kitaev A, Shen A, Vyalyi M. Classical and Quantum Computation. Boston, MA, USA: American Mathematical Society, 2002.
  • Knill E. Approximation by Quantum Circuits. Los Alamos National Laboratory Technical Report. Los Alamos, NM, USA: Los Alamos National Laboratory, 1995.
  • Deutsch D. Quantum theory, the Church–Turing principle and the universal quantum computer. P R Soc London 1985; A400: 97-117.
  • Vandersypen L, Steffen M, Breyta G, Yannoni C, Cleve R, Chuang I. Experimental realization of an order-finding algorithm with an NMR quantum computer. Phys Rev Lett 2000; 85: 5452-5455.
  • Shor P. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput 1997; 26: 1484-1509.
  • Shor P. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science; 1994. New York, NY, USA: IEEE. pp. 124-134.
  • Simon D. On the power of quantum computation. SIAM J Comput 1997; 26: 1474-1483.
  • Deutsch D, Jozsa R. Rapid solution of problems by quantum computation. P R Soc London 1992; A439: 553-558.
  • Feynman R. Simulating physics with computers. Int J Theor Phys 1982; 21: 467-488.
  • Feynman R. Quantum mechanical computers. Optics News 1985; 11: 11-20.
  • Benioff P. Quantum mechanical Hamiltonian models of Turing machines. J Stat Phys 1982; 29: 515-546.
  • Plummer J, Griffin P. Material and process limits in silicon VLSI technology. P IEEE 2001; 89: 240-258.
  • Claassen T. System on chip: changing IC design today and in the future. IEEE Micro 2004; 23: 20-26.
  • Ronen R, Mendelson A, Lai K, Pollack F, Shen J. Coming challenges in microarchitecture and architecture. P IEEE 2001; 83: 325-339.
  • Murari B. Integrating nanoelectronic components into electronic microsystems. IEEE Micro 2003; 23: 36-44.
  • Ling J. In: Future Horizons Industry Midterm Forecast Seminar; 20 July 2010; Kensington, London. p. 36.
  • Hennessy JL, Patterson D. Computer Architecture: A Quantitative Approach. 3rd ed. Amsterdam, the Netherlands: Morgan Kaufman, 2003.
  • Meindl JD, Davis JA. The fundamental limit on binary switching energy for terascale integration (TSI). IEEE J Solid-St Circ 2000; 35: 1515-1516.
  • Burger D, Goodman J. Billion-transistor architectures: there and back again. Computer 2004; 37: 22-28.
  • Moore G. Cramming more circuits onto integrated circuits. Electronics 1965; 38: 114-117.
  • Semiconductor Industry Association. National Technology Roadmap for Semiconductors 1997. San Jose, CA, USA: SIA, 1997.
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Adaptive collaborative speed control of PMDC motor using hyperbolic secant functions and particle swarm optimization

Khalid MAHMOOD-UL-HASAN, Omer SALEEM

A modeling and simulation study about CO2 amount with web-based indoor air quality monitoring

Nesibe YALÇIN, Ahmet ÖZMEN, Deniz BALTA

Implementing universal dependency, morphology, and multiword expression annotation standards for Turkish language processing

Umut SULUBACAK, Gül¸sen ERYİĞİT

Modeling of realistic heart electrical excitation based on DTI scans and modified reaction diffusion equation

Ihab ELAFF

Virtual force-based intelligent clustering for energy-efficient routing in mobile wireless sensor networks

Selvi MUNUSWAMY, Jothi Muneeswari SARAVANAKUMAR, Ganapathy SANNASI, Khanna Nehemiah HARICHANDRAN, Kannan ARPUTHARAJ

A compact branch-line coupler design using low-pass resonators and meandered lines open stubs

Fatemeh HOSSEINKHANI, Saeed ROSHANI

Effect of intuitionistic fuzzy normalization in microarray gene selection

Premalatha KANDHASAMY, Prema RAMASAMY

Conception and control of a WTGS system using a novel control technique based on MPC-DPC-MVF with a switch optimization process

Mansour MADACI, Djallel KERDOUN

Hardware Trojan detection and localization based on local detectors

Amin BAZZAZI, Mohammad Taghi MANZURI SHALMANI, Ali Mohammad Afshin HEMMATYAR

Forecasting the Baltic Dry Index by using an artificial neural network approach

Bedir ÜNVER, Samet GÜRGEN, Bekir ŞAHİN, İsmail ALTIN