Bidding strategy for generators considering ramp rates in a day-ahead electricity market

Bidding strategy for generators considering ramp rates in a day-ahead electricity market

In a day-ahead electricity market, competitive bidding strategy plays a vital role for power suppliers tomaximize their profit. In this type of market, each power supplier submits a set of hourly production prices and offerscapacity for the next period. The market operator, after receiving this data along with forecasted hourly load from thedemand side, allocates production output to each unit. Power suppliers face the problem in trading their offers in themarket, due to the uncertain behavior of competitive power suppliers and power demand. Therefore, the power supplierrequires a suitable bidding strategy for handling uncertainty in the market to maximize their profits. Moreover, theconsiderations of ramp rates are necessary for the precise representation of practical power system. Thus, in the presentwork, a modified gravitational search algorithm based on oppositional learning concept is used to solve strategic biddingproblem for power suppliers considering six generators with ramp rates, 24-h load data and rivals behavior. The totalhourly profits of generators with and without considering ramp rates have been compared.

___

  • [1] Bhattacharya K, Bollen MHJ, Daalder JE. Operation of restructured power systems. London, UK: Kluwer Academic Publishers, 2001.
  • [2] Prabavathi M, Gnanadass R. Energy bidding strategies for restructured electricity market. Electrical Power and Energy Systems 2015; 64: 956-966. doi: 10.1016/j.ijepes.2014.08.018
  • [3] Rajaraman R, Alvarado F. Optimal bidding strategy in electricity markets under uncertain energy and reserve prices. Ithaca, NY, USA: PSERC Publication, 2003.
  • [4] David AK. Competitive bidding in electricity supply. IEE Proc C–Generation, Transmission and Distribution, IEEE Proceeding of Generation Transmission Distribution 1993; 140: 421-426. doi: 10.1049/ip-c.1993.0061
  • [5] Wen FS, David AK. Optimal bidding strategies and modeling of imperfect information among competitive generators. IEEE Transactions Power Systems 2001; 16(1): 15-21. doi: 10.1109/59.910776
  • [6] Lazzaretto A, Carraretto C. Optimum production plans for thermal power plants in the deregulated electricity market. Energy 2006; 31 (10-11): 1567-1585. doi: 10.1016/j.energy.2005.05.007
  • [7] Bajpai P, Punna SK, Singh SN. Swarm intelligence-based strategic bidding in competitive electricity markets. IET Generation, Transmission, and Distribution 2008; 2(2): 175-184. doi: 10.1049/iet-gtd:20070217
  • [8] Bajpai P, Singh SN. Fuzzy adaptive particle swarm optimization for bidding strategy in uniform price spot market. IEEE Transactions Power Systems 2007; 22(4): 2152-2160. doi: 10.1109/TPWRS.2007.907445
  • [9] Yucekya AD, Valenzuela J, Dozier G. Strategic bidding in electricity market using particle swarm optimization. Electric Power System Research 2009; 79: 335-345. doi: 10.1016/j.epsr.2008.07.006
  • [10] Soleymani S. Bidding strategy of generation companies using PSO combined with SA method in the pay as bid markets. Electrical Power and Energy Systems 2011; 33(7): 1272-1278. doi: 10.1016/j.ijepes.2011.05.003
  • [11] Boonchuay C, Ongsakul W. Risk-constrained optimal bidding strategy for a generation company using selforganizing hierarchical particle swarm optimization. Applied Artificial Intelligence An International Journal 2012; 26: 246-260. doi: 10.1080/08839514.2012.646162
  • [12] Azadeh A, Ghaderi SF, Nokhanandan BP, Shaikhalishahi M. A new GA approach for optimal bidding strategy viewpoint of profit maximization of a generation company. Expert Systems with Applications 2012; 39(1):1565- 1574. doi: 10.1016/j.eswa.2011.05.015
  • [13] Mousavi SH, Nazemi A, Hafezalkotob A. Nash equilibrium strategy in the deregulated power industry and comparing its lost welfare with Iran wholesale electricity market. Journal of Industrial Engineering International 2016; 12(4): 421-435. doi: 10.1007/s40092-016-0152-z
  • [14] Niknam T, Sharifinia S, Abarghooee RA. A new enhanced bat-inspired algorithm for finding linear supply function equilibrium of GENCOs in the competitive electricity market. Energy Conversion and Management 2013; 76: 1015- 1028. doi: 10.1016/j.enconman.2013.08.012
  • [15] Singh S, Fozdar M. Optimal bidding strategy with the inclusion of wind power supplier in an emerging power market. IET Generation, Transmission, and Distribution 2019; 13(10):1914-1922. doi: 10.1049/iet-gtd.2019.0118.
  • [16] Jonnalagadda VK, Mallesham VKD, Edukondalu K. Strategic bidding using fuzzy adptive gravitational search algorithm in a pool based electricity market. Applied Soft Computing 2013; 13 (5): 2445-2455. doi: 10.1016/j.asoc.2012.12.003
  • [17] Jonnalagadda VK, Mallesham VKD. Bidding strategy of generation companies in a competitive electricity market using the shuffled frog leaping algorithm. Turkish Journal of Electrical Engineering and Computer Sciences 2013; 21(6):1567-1583. doi: 10.3906/elk-1109-43
  • [18] Yang S, YAO J. A learning method to evaluate a generation company’s bidding strategy in the electricity market. Turkish Journal of Electrical Engineering and Computer Sciences 2014; 22(1): 34-42. doi: 10.3906/elk-1205-12
  • [19] Mousavi SH, Nazemi A, Hafezalkotob A. Using and comparing metaheuristic algorithms for optimizing bidding strategy viewpoint of profit maximization of generators. Journal of Industrial Engineering International 2014; 11: 59-72. doi: 10.1007/s40092-014-0094-2
  • [20] Angatha VVS, Chandram K, Laxmi AJ. Bidding strategy in deregulated power market using differential evolution algorithm. Journal of Power and Energy Engineering 2015; 03(11):37-46 doi: 10.4236/jpee.2015.311004
  • [21] Wang C, Shahidehpour SM. Effects of ramp-rate limits on unit commitment and economic dispatch. IEEE Transactions Power Systems 1993; 8(3): 1341-1350. doi: 10.1109/59.260859
  • [22] Yaghooti A, Buygi MO, Zareipour H. Impacts of ramp rate limits on oligopolistic opportunities in electricity markets. IEEE Systems Journal 2014; 10(1): 127-135. doi: 10.1109/JSYST.2014.2354375
  • [23] Duman S, Guvenc U, Sonmez Y, Yorukeren N. Optimal power flow using gravitational search algorithm. Energy Conversion and Management 2012; 59: 86-95. doi: 10.1016/j.enconman.2012.02.024
  • [24] Roy PK. Solution of unit commitment problem using gravitational search algorithm. Electrical Power and Energy Systems 2013; 53: 85-94. doi: 10.1016/j.ijepes.2013.04.001
  • [25] Yuana X, Ji B, Zhang S, Tiana H, Houa Y. A new approach for unit commitment problem via binary gravitational search algorithm. Applied Soft Computing 2014; 22: 249-260. doi: 10.1016/j.asoc.2014.05.029
  • [26] Cuevas E, Diaz P, Avalos O, Zaldivar D, Perez-Cisneros M. Nonlinear system identification based on ANFISHammerstein model using Gravitational search algorithm. Applied Intelligence 2018; 48(1): 182-203. doi: 10.1007/s10489-017-0969-1
  • [27] Rashedi E, Nezamabadi-pour H, Saryazdi S. BGSA: binary gravitational search algorithm. Natural Computing 2010; 9(3): 727-745. doi: 10.1007/s11047-009-9175-3
  • [28] Rashedi E, Rashedi E, Nezamabadi-pour H. A comprehensive survey on gravitational search algorithm. Swarm and Evolutionary Computation 2018; 41: 141-158. doi: 10.1016/j.swevo.2018.02.018
  • [29] Rashedi E, Nezamabadi-pour H, Saryazdi S. GSA: A gravitational search algorithm. Information Sciences 2009; 179(13): 2232-2248. doi: 10.1016/j.ins.2009.03.004
  • [30] Tizhoosh HR. Opposition-based learning: a new scheme for machine intelligence. International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06); Vienna, Austria; 2005. pp. 695-701. doi: 10.1109/CIMCA.2005.1631345
  • [31] Wen FS, David AK. Optimally co-ordinate bidding strategies in energy and ancillary service markets. IEEE Proceedings - Generation, Transmission and Distribution 2002; 149(3): 331-339. doi: 10.1049/ip-gtd:20020211