Attention augmented residual network for tomato disease detection and classification

Attention augmented residual network for tomato disease detection and classification

Deep learning techniques help agronomists efficiently identify, analyze, and monitor tomato health. CNN (convolutional neural network) locality constraint and existing small train sample adversely influenced disease recognition performance. To alleviate these challenges, we proposed a discriminative feature learning attention augmented residual (AAR) network. The AAR network contains a stacked pre-activated residual block that learns deep coarse level features with locality context, whereas the attention block captures salient feature sets while maintaining the global relationship in data points, attention features augment the learning of the residual block. We used conditional variational generative adversarial network (CVGAN) image reconstruction network and augmentation techniques to enlarge the training sample size and improve feature distribution. We conducted several experiments to demonstrate the AAR network performance.The AAR network performed 97.04% accuracy without data generation and augmentation, 98.91% with data generation and augmentation, and 99.03% trained with data augmentation, which consistently improved tomato disease recognition and visualization effectiveness in both cases by learning salient features than deep and wide CNN baseline networks and other related works. Therefore, the AAR network can be a good candidate for improved tomato disease detection and classification task.

___

  • [1] Mohanty SP, Hughes DP, Salathé M. Using deep learning for image-based plant disease detection. Frontiers Plant Science 2016; 7: 1419. doi: 10.3389/fpls.2016.01419
  • [2] Tai APK, Martin MV, Heald CL. Threat to future global food security from climate change and ozone air pollution. Nature Climate Change 2014; 4 (9): 817-21. doi: 10.1038/nclimate2317
  • [3] Zhang K, Wu Q, Liu A, Meng X. Can deep learning identify tomato leaf disease?. Advances in Multimedia 2018; 2018: doi: 10.1155/2018/6710865
  • [4] Brahimi M, Boukhalfa K, Moussaoui A. Deep learning for tomato diseases: classification and symptoms visualization. Applied Artificial Intelligence. 2017; 31 (4): 299-315. doi: 10.1080/08839514.2017.1315516
  • [5] Amara J, Bouaziz B, Algergawy A. A deep learning-based approach for banana leaf diseases classification. 2017; 31 (4): 299-315. doi: 10.1080/08839514.2017.1315516
  • [6] Kamilaris A, Prenafeta-Boldú FX. Deep learning in agriculture: A survey. Datenbanksysteme für Business, Technologie und Web (BTW 2017) - Workshopband. Bonn: Gesellschaft für Informatik e.V. 2017; 79-88.
  • [7] Nazki H, Yoon S, Fuentes A, Park DS. Unsupervised image translation using adversarial networks for improved plant disease recognition. Computers and Electronics in Agriculture 2020; 168: 105117. doi: 10.1016/j.compag.2019.105117
  • [8] Yilma G, Belay S, Qin Z, Gedamu K, Ayalew M. Plant Disease Classification Using Two Pathway Encoder GAN Data Generation. In: 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP); Chengdu, China; 2020. pp. 67-72. doi: 10.1109/ICCWAMTIP51612.2020.9317494
  • [9] Cap QH, Uga H, Kagiwada S, Iyatomi H. Leafgan: An effective data augmentation method for practical plant disease diagnosis. IEEE Transactions on Automation Science and Engineering. 2020; 1-10. doi: 10.1109/TASE.2020.3041499
  • [10] Valerio Giuffrida M, Scharr H, Tsaftaris SA. Arigan: Synthetic arabidopsis plants using generative adversarial network. In: IEEE International Conference on Computer Vision Workshops (ICCVW); Venice, Italy; 2017. pp. 2064-2071. doi: 10.1109/ICCVW.2017.242
  • [11] Singh D, Jain N, Jain P, Kayal P, Kumawat S, Batra N. PlantDoc: a dataset for visual plant disease detection. In: Proceedings of the 7th ACM IKDD CoDS and 25th COMAD; New York, NY, USA; 2020. pp. 249-253. doi: 10.1145/3371158.3371196
  • [12] Brahimi M, Arsenovic M, Laraba S, Sladojevic S, Boukhalfa K, Moussaoui A. Deep learning for plant diseases: detection and saliency map visualisation. In: Human and Machine Learning. Cham: Springer, 2018, pp. 93-117.
  • [13] Ferentinos KP. Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture 2018; 145: 311-318. doi: 10.1016/j.compag.2018.01.009
  • [14] Bloice MD, Roth PM, Holzinger A. Biomedical image augmentation using Augmentor. Bioinformatics 2019; 35 (21): 4522-4524. doi: 10.1093/bioinformatics/btz259
  • [15] Fuentes AF, Yoon S, Lee J, Park DS. High-performance deep neural network-based tomato plant diseases and pests diagnosis system with refinement filter bank. Frontiers in Plant Science 2018; 9: 1162. doi: 10.3389/fpls.2018.01162
  • [16] Arsenovic M, Karanovic M, Sladojevic S, Anderla A, Stefanovic D. Solving current limitations of deep learning based approaches for plant disease detection. Symmetry 2019; 11 (7): 939. doi: 10.3390/sym11070939
  • [17] Odena A, Olah C, Shlens J. Conditional image synthesis with auxiliary classifier gans. In: Proceedings of the 34th International Conference on Machine Learning; Sydney, Australia; 2017. pp. 2642-2651.
  • [18] Tian Y, Peng X, Zhao L, Zhang S, Metaxas DN. CR-GAN: Learning complete representations for multi-view generation. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence; Stockholm, Sweden; 2018. pp. 942-948. doi: 10.24963/ijcai.2018/131
  • [19] K. Gedamu, Y. Ji, Y. Yang, L. Gao, and H. T. Shen, Arbitrary-view Human Action Recognition via Novel-view Action Generation. Pattern Recognition 2021; 118: 108043. doi: 10.1016/j.patcog.2021.108043
  • [20] Bao J, Chen D, Wen F, Li H, Hua G. CVAE-GAN: fine-grained image generation through asymmetric training. In: 2017 IEEE International Conference on Computer Vision (ICCV); Los Alamitos, CA, USA; 2017. pp. 2764-2773. doi: 10.1109/ICCV.2017.299
  • [21] Sibiya M, Sumbwanyambe M. A computational procedure for the recognition and classification of maize leaf diseases out of healthy leaves using convolutional neural networks. AgriEngineering 2019; 1 (1): 119-131. doi: 10.3390/agriengineering1010009
  • [22] Saleem MH, Potgieter J, Arif KM. Plant disease detection and classification by deep learning. Plants 2019; 8 (11): 468. doi: 10.3390/plants8110468
  • [23] Jiang D, Li F, Yang Y, Yu S. A Tomato Leaf Diseases Classification Method Based on Deep Learning. In: 2020 Chinese Control And Decision Conference (CCDC); Hefei, China; 2020. pp. 1446-1450. doi: 10.1109/CCDC49329.2020.9164457
  • [24] Rangarajan AK, Purushothaman R, Ramesh A. Tomato crop disease classification using pre-trained deep learning algorithm. Procedia Computer Science 2018; 133: 1040-1047. doi: 10.1016/j.procs.2018.07.070
  • [25] Yamamoto K, Togami T, Yamaguchi N. Super-resolution of plant disease images for the acceleration of image-based phenotyping and vigor diagnosis in agriculture. Sensors 2017; 17(11): 2557. doi: 10.3390/s17112557
  • [26] Zhang H, Goodfellow I, Metaxas D, Odena A. Self-attention generative adversarial networks. In: Proceedings of the 36th International Conference on Machine Learning; Long Beach, California, USA; 2019. pp. 7354-7363.
  • [27] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L et al. Attention is all you need. In: 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, California, USA; 2017. pp. 5998-6008.
  • [28] Wang F, Jiang M, Qian C, Yang S, Li C et al. Residual attention network for image classification. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Honolulu, HI, USA; 2017. pp. 450-6458. doi: 10.1109/CVPR.2017.683
  • [29] Woo S, Park J, Lee JY, Kweon IS. Cbam: Convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV); Munich, Germany; 2018. pp.3-19.
  • [30] Park J, Woo S, Lee JY, Kweon IS. Bam: Bottleneck attention module. British Machine Vision Conference. 2018.
  • [31] Bello I, Zoph B, Le Q, Vaswani A, Shlens J. Attention augmented convolutional networks. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV); Seoul, Korea (South); 2019. pp. 3285-3294. doi: 10.1109/ICCV.2019.00338
  • [32] Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B et al. Attention gated networks: Learning to leverage salient regions in medical images. Medical Image Analysis 2019; 53: 197-207. doi: 10.1016/j.media.2019.01.012
  • [33] Durmuş H, Güneş EO, Kırcı M. Disease detection on the leaves of the tomato plants by using deep learning. In: 2017 6th International Conference on Agro-Geoinformatics; Fairfax, VA, USA; 2017. pp. 1-5. doi: 10.1109/AgroGeoinformatics.2017.8047016
  • [34] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Las Vegas, NV, USA; 2016. pp. 770-778. doi: 10.1109/CVPR.2016.90
  • [35] Yang G, He Y, Yang Y, Xu B. Fine-Grained Image Classification for Crop Disease Based on Attention Mechanism. Frontiers in Plant Science 2020; 11: 2077. doi: 10.3389/fpls.2020.600854
  • [36] Karthik R, Hariharan M, Anand S, Mathikshara P, Johnson A et al. Attention embedded residual CNN for disease detection in tomato leaves. Applied Soft Computing 2020; 86: 105933. doi: 10.1016/j.asoc.2019.105933
  • [37] Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A. Improved training of wasserstein GANs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems; Long Beach, California, USA; 2017. pp. 5769–5779.
  • [38] Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV); Venice, Italy; 2017. pp. 618-626. doi: 10.1109/ICCV.2017.74
  • [39] Sampat MP, Wang Z, Gupta S, Bovik AC, Markey MK. Complex wavelet structural similarity: A new image similarity index. IEEE Transactions on Image Processing 2009; 18 (11): 2385-2401. doi: 10.1109/TIP.2009.2025923
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Employing deep learning architectures for image-based automatic cataract diagnosis

Ömer TÜRK, Erdoğan ALDEMİR, Ömer Faruk ERTUĞRUL, Emrullah ACAR

Benchmarking of deep learning algorithms for skin cancer detection based on a hybrid framework of entropy and VIKOR techniques

Baidaa AL-BANDER, Rwayda KH. S.AL-HAMD, Qahtan M. YAS, Hussain MAHDI

A deep transfer learning based model for automatic detection of COVID-19 from chest X-rays

Prateek CHHIKARA, Prakhar GUPTA, Prabhjot SINGH, Tarunpreet BHATIA

Leukocyte classification based on feature selection using extra trees classifier: a transfer learning approach

Diana BABY, Jude HEMANTH, Anishin Raj MM, Sujitha Juliet DEVARAJ

Improved cell segmentation using deep learning in label-free optical microscopy images

Devrim ÜNAY, Özden YALÇIN ÖZUYSAL, Devrim PESEN OKVUR, Behçet Uğur TÖREYİN, Aydin AYANZADEH, Sevgi ÖNAL

Medical image fusion with convolutional neural network in multiscale transform domain

Hasan Erdinç KOÇER, Nurdan AKHAN BAYKAN, Asan Ihsan ABAS

Diagnosis of paroxysmal atrial fibrillation from thirty-minute heart rate variability data using convolutional neural networks

Resul KARA, Murat SURUCU, Yalcin ISLER

MRI based genomic analysis of glioma using three pathway deep convolutional neural network for IDH classification

Sonal GORE, Jayant JAGTAP

Evolution of histopathological breast cancer images classification using stochastic dilated residual ghost model

Ramgopal Kashyap

Attention-based end-to-end CNN framework for content-based X-ray image retrieval

Adi ALHUDHAİF, Kemal POLAT, Şaban ÖZTÜRK