An arbitrary waveform magnetic nanoparticle relaxometer with an asymmetrical three-section gradiometric receive coil

An arbitrary waveform magnetic nanoparticle relaxometer with an asymmetrical three-section gradiometric receive coil

Magnetic nanoparticles (MNPs) have a wide range of clinical applications for imaging, therapy, and biosensing.Superparamagnetic MNPs can be directly visualized with high spatiotemporal resolution using the magnetic particleimaging (MPI) modality. The image resolution of MPI depends on the relaxation properties of the MNPs. Therefore,characterization of MNP response under alternating magnetic field excitation is necessary to predict MPI imagingperformance and develop optimized MNPs. Biosensing applications also make use of the change in the relaxationresponse of MNPs after binding to a target agent. As MNP relaxation properties change with temperature andviscosity, noninvasive probing of these microenvironmental properties is possible. In this work, we present an untunedrelaxometer to measure the relaxation properties of the MNPs in a wide frequency and amplitude range. The developedrelaxometer can produce above 80 mTpp magnetic field at up to 60 kHz frequency, and above 14 mTpp at up to150 kHz frequency. An asymmetrical three-section gradiometer receive coil is used to cancel the direct coupled signalfrom the transmit coil. The position of one of the receive coil sections is manually tuned using a rotating knob forimproved decoupling. The tuning coil section has a lower number of turns compared to the other sections to decreasethe sensitivity to mechanical movement. By tuning the knob, the transmit-receive coupling can be decreased below–80 dB. We analyzed the x-space image resolution, harmonic levels, and effect of the number of used harmonics on theresolution for two different commercially available superparamagnetic iron oxide MNPs (Perimag and Synomag-D) in amultifrequency/multiamplitude measurement scheme. The magnetization properties of MNPs for arbitrary waveformscan be measured efficiently using the developed relaxometer.

___

  • [1] Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C et al. Magnetic particle imaging: current developments and future directions. International Journal of Nanomedicine 2015; 10: 3097–3114. doi: 10.2147/IJN.S70488
  • [2] Stephen ZR, Kievit FM, Zhang M. Magnetite nanoparticles for medical MR imaging. Materials Today 2011; 14(7–8): 330–338. doi: 10.1016/S1369-7021(11)70163-8
  • [3] Giustini AJ, Petryk AA, Cassim SM, Tate JA, Baker I et al. Magnetic nanoparticle hyperthermia in cancer treatment. Nano LIFE 2010; 1: 01n02. doi:10.1142/S1793984410000067 .
  • [4] Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nature Materials 2013; 12 (11): 991–1003. doi: 10.1038/nmat3776
  • [5] Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005; 435 (7046): 1214–1217. doi: 10.1038/nature03808
  • [6] Knopp T, Buzug TM. Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation. Heidelberg, Germany: Springer-Verlag, 2012.
  • [7] Borgert J, Schmidt JD, Schmale I, Rahmer J, Bontus C et al. Fundamentals and applications of magnetic particle imaging. Journal of Cardiovascular Computed Tomography 2012; 6 (3): 149–153. doi: 10.1016/j.jcct.2012.04.007
  • [8] Knopp T, Gdaniek N, Möddel M. Magnetic particle imaging: from proof of principle to preclinical applications. Physics in Medicine and Biology 2017; 62 (14): R124. doi: 10.1088/1361-6560/aa6c99
  • [9] Weaver JB. The use of magnetic nanoparticles in thermal therapy monitoring and screening: localization and imaging (invited). Journal of Applied Physics 2012: 111 (7): 07B317. doi: 10.1063/1.3675994
  • [10] Weaver JB, Rauwerdink AM, Hansen EW. Magnetic nanoparticle temperature estimation. Medical Physics 2009; 36 (5): 1822–1829. doi: 10.1118/1.3106342
  • [11] Rauwerdink AM, Weaver JB. Viscous effects on nanoparticle magnetization harmonics. Journal of Magnetism and Magnetic Materials 2010; 322 (6): 609–613. doi: 10.1016/j.jmmm.2009.10.024
  • [12] Utkur M, Muslu Y, Saritas EU. Relaxation-based viscosity mapping for magnetic particle imaging. Physics in Medicine and Biology 2017; 62 (9): 3422–3439. doi: 10.1088/1361-6560/62/9/3422
  • [13] Rauwerdink AM, Weaver JB. Measurement of molecular binding using the Brownian motion of magnetic nanoparticle probes. Applied Physics Letters 2010; 96 (3): 033702. doi: 10.1063/1.3291063
  • [14] Néel L. Thermoremanent magnetization of fine powders. Reviews of Modern Physics 1953; 25 (1): 293–295. doi: 10.1103/RevModPhys.25.293
  • [15] Brown WF. Thermal fluctuations of a single-domain particle. Journal of Applied Physics 1963; 34 (4): 1319–1320. doi: 10.1063/1.1729489
  • [16] Coffey WT, Cregg PJ, Kalmykov YUP. On the theory of Debye and Néel relaxation of single domain ferromagnetic particles. Advances in Chemical Physics 2007; 1: 263–464. doi: 10.1002/9780470141410.ch5
  • [17] Malhotra A, von Gladiss A, Behrends A, Friedrich T, Neumann A et al. Tracking the growth of superparamagnetic nanoparticles with an in-situ magnetic particle spectrometer (INSPECT). Scientific Reports 2019; 9 (1): 1–13. doi: 10.1038/s41598-019-46882-6
  • [18] Biederer S, Sattel T, Knopp T, Lüdtke-Buzug K, Gleich B et al. A spectrometer for magnetic particle imaging. In: Vander Sloten J, Verdonck P, Nyssen M, Haueisen J (editors). 4th European Conference of the International Federation for Medical and Biological Engineering. Berlin, Germany: Springer, 2009, pp. 2313–2316.
  • [19] Wawrzik T, Schilling M, Ludwig F. Perspectives of magnetic particle spectroscopy for magnetic nanoparticle characterization. In: Buzug TM, Borgert J (editors). Magnetic Particle Imaging. Berlin, Germany: Springer, 2012, pp. 41–45.
  • [20] Goodwill PW, Tamrazian A, Croft LR, Lu CD, Johnson EM et al. Ferrohydrodynamic relaxometry for magnetic particle imaging. Applied Physics Letters 2011; 98 (26): 262502. doi: 10.1063/1.3604009
  • [21] Utkur M, Saritas EU. Comparison of different coil topologies for an MPI relaxometer. In: IWMPI 2015 International Workshop on Magnetic Particle Imaging; Istanbul, Turkey; 2015. pp. 1-13. doi: 10.1109/IWMPI.2015.7107082
  • [22] Behrends A, Graeser M, Buzug TM. Introducing a frequency-tunable magnetic particle spectrometer. Current Directions in Biomedical Engineering 2015; 1 (1): 249–253. doi: 10.1515/cdbme-2015-0062
  • [23] Tay ZW, Goodwill PW, Hensley DW, Taylor LA, Zheng B et al. A high-throughput, arbitrary-waveform, MPI spectrometer and relaxometer for comprehensive magnetic particle optimization and characterization. Scientific Reports 2016; 6: 1-11. doi: 10.1038/srep34180
  • [24] Graeser M, Gladiss AV, Weber M, Buzug TM. Two dimensional magnetic particle spectrometry. Physics in Medicine and Biology 2017; 62 (9): 3378–3391. doi: 10.1088/1361-6560/aa5bcd
  • [25] Chen X, Graeser M, Behrends A, von Gladiss A, Buzug TM. First measurement and SNR results of a 3D magnetic particle spectrometer. International Journal on Magnetic Particle Imaging 2018; 4 (1): 1-20.
  • [26] Eberbeck D, Dennis CL, Huls NF, Krycka KL, Grüttner C et al. Multicore magnetic nanoparticles for magnetic particle imaging. IEEE Transactions on Magnetics 2013; 49 (1): 269-274. doi: 10.1109/TMAG.2012.2226438
  • [27] Grüttner C, Kowalski A, Fidler F, Steinke M, Westphal F et al. Synomag nanoflower particles: a new tracer for MPI, physical characterization and initial in vitro toxicity studies. In: IWMPI 2018 International Workshop on Magnetic Particle Imaging; Hamburg, Germany; 2018. pp. 17-8.
  • [28] Saritas EU, Goodwill PW, Zhang GZ, Conolly SM. Magnetostimulation limits in magnetic particle imaging. IEEE Transactions on Medical Imaging 2013; 32 (9): 1600–1610. doi: 10.1109/TMI.2013.2260764
  • [29] Croft LR, Goodwill PW, Konkle JJ, Arami H, Price DA et al. Low drive field amplitude for improved image resolution in magnetic particle imaging. Medical Physics 2016; 43 (1): 424–435. doi: 10.1118/1.4938097
  • [30] Croft LR, Goodwill PW, Conolly SM. Relaxation in x-space magnetic particle imaging. IEEE Transactions on Medical Imaging 2012; 31 (12): 2335–2342. doi: 10.1109/TMI.2012.2217979
  • [31] Goodwill PW, Conolly SM. The x-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Transactions on Medical Imaging 2010; 29 (11): 1851–1859. doi: 10.1109/TMI.2010.2052284
  • [32] Lu K, Goodwill PW, Saritas EU, Zheng B, Conolly SM. Linearity and shift invariance for quantitative magnetic particle imaging. IEEE Transactions on Medical Imaging 2013; 32 (9): 1565–1575. doi: 10.1109/TMI.2013.2257177
  • [33] Kuhlmann C, Khandhar AP, Ferguson RM, Kemp S, Wawrzik T et al. Drive-field frequency dependent MPI performance of single-core magnetite nanoparticle tracers. IEEE Transactions on Magnetics 2015; 51: 3–6.
  • [34] Schulz V, Straub M, Mahlke M, Hubertus S, Lammers T et al. A field cancellation signal extraction method for magnetic particle imaging. IEEE Transactions on Magnetics 2015; 51: 1-12.
  • [35] Pantke D, Holle N, Mogarkar A, Straub M, Schulz V. Multifrequency magnetic particle imaging enabled by a combined passive and active drive field feed-through compensation approach. Medical Physics 2019; 46 (9): 4077- 4086.
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

An arbitrary waveform magnetic nanoparticle relaxometer with an asymmetrical three-section gradiometric receive coil

Can Barış TOP

Comparisons of extreme learning machine and backpropagation-based i-vector approach for speaker identification

Mohammed A.M. ABDULLAH, Musab T.S. Al-KALTAKCHI, Raid R. O. AL-NIMA

Lattice-reduction aided multiple-symbol differential detection in two-way relay transmission

Minghua CAO, Chanfei WANG

Combining metadata and co-citations for recommending related papers

Shahbaz AHMAD, Muhammad Tanvir AFZAL

Analysis of acoustic sensor placement for PD location in power transformer

Baharuddin ISMAIL, Chai Chang YII, Muhammad Nur Khairul Hafizi ROHANI, Wan Nurul Auni Wan MUHAMMAD, Khairul Nadiah KHALID, Muzamir ISA

Selective personalization and group profiles for improved web search personalization

İlyas ÇİÇEKLİ, Samira KARIMI MANSOUB, Gönenç ERCAN

Experimental and predicted XLPE cable insulation properties under UV radiation

Sébastien RONDOT, Madjid TEGUAR, Mustapha MOUDOUD, Abdallah HEDIR, Ali BECHOUCHE, Omar LAMROUS

Low harmonic 12-pulse rectifier with a circulating current shaping circuit

Jingfang WANG, Xuliang YAO, Shiyan YANG, Changji DENG, Qi GUAN

A GA-based adaptive mechanism for sensorless vector control of induction motor drives for urban electric vehicles

Asma BOULMANE, Marouane BOUCHOUIRBAT, Driss BELKHAYAT, Youssef ZIDANI

An optimized FPGA design of inverse quantization and transform for HEVC decoding blocks and validation in an SW/HW environment

Rabie BEN ATITALLAH, Manel KAMMOUN, Ahmed BEN ATITALLAH