A summary of recent developments on metamaterial-based and material-inspired efficient electrically small antennas

A summary of recent developments on metamaterial-based and material-inspired efficient electrically small antennas

This paper summarizes our recent research efforts to realize efficient electrically small antenna (EESA) systems based on ideal analytical and numerical metamaterial-based antenna systems, and physically realized metamaterial-inspired antenna designs. Our theoretical and numerical studies ofthe radiation and resonance behaviors ofthe proposed metamaterial-based EESA systems, as well as our efforts to conceptualize structures which might be used to build them, have led to the discovery ofsever al realizable metamaterial-inspired EESA systems. The measurement results confirm the numerical performance predictions.

___

  • [1] L.J. Chu, “Physical limitations of omnidirectional antennas,” J. Appl. Phys., Vol. 19, pp. 1163-1175, 1948.
  • [2] H.A. Wheeler, “Fundamental limitations of small antennas,” IRE Proc., Vol. 35, pp. 1479-1484, 1947.
  • [3] H.A. Wheeler, “The radiansphere around a small antenna,” IRE Proc., Vol. 47, pp. 1325-1331, 1959.
  • [4] R.E. Collin, S. Rothschild, “Evaluation of antenna Q,” IEEE Trans. Antennas Propag., Vol. AP-12, pp. 23-27, 1964.
  • [5] R.C. Hansen, “Fundamental limitations in antennas,” Proc. IEEE, Vol. 69, pp. 170-181, 1981.
  • [6] J.S. McLean, “A re-examination of the fundamental limits on the radiation Q of electrically small antennas,” IEEE Trans. Antennas Propag., Vol. AP-44, pp. 672-676, 1996.
  • [7] A.D. Yaghjian, S.R. Best, “Impedance, bandwidth, and Q of antennas,” IEEE Trans. Antennas Propag., Vol. 53, pp. 1298-1324, 2005.
  • [8] R.P. Harrington, Time Harmonic Electromagnetic Fields, New York: McGraw-Hill, 1961, pp. 414-420.
  • [9] C.A. Balanis, Antenna Theory, 3rd Ed., John Wiley & Sons, New York, 2005, pp. 637-641.
  • [10] IEEE standard definitions of terms for antennas, 145-1993, 1993.
  • [11] S.R. Best, “A discussion on the properties of electrically small self-resonant wire antennas,” IEEE Antennas and Propag. Mag., Vol. 46, pp. 9-22, 2004.
  • [12] S.R. Best, “The radiation properties of electrically small folded spherical helix antennas,” IEEE Trans. Antennas Propag., Vol. 52(4), pp. 953-960, 2004.
  • [13] C. Puente, J. Romeu, A. Cardama, “Fractal Antenas,” in D. H. Werner and R. Mittra, Eds., Frontiers in Electromagnetics, Piscataway, NJ: IEEE Press, pp. 48-93, 2000.
  • [14] J. Zhu, A. Hoorfar, N. Engheta, “Peano antennas,” IEEE Antennas and Wireless Propag. Lett., Vol. 3, pp.71-74, 2004.
  • [15] E.E. Altshuler, “Electrically small self-resonant wire antennas optimized using a genetic algorithm,” IEEE Trans. Antennas Propag., Vol. AP-50(3), pp. 297-300, 2002.
  • [16] N. Engheta, R.W. Ziolkowski, Eds., Metamaterials: Physics and Engineering Explorations, Wiley-IEEE Press, Hoboken, NJ, 2006.
  • [17] R.W. Ziolkowski, A. Kipple, “Application of double negative metamaterials to increase the power radiated by electrically small antennas,” IEEE Trans. Antennas Propag., Vol. 51, pp. 2626-2640, 2003.
  • [18] R.W. Ziolkowski, A.D. Kipple, “Reciprocity between the effects of resonant scattering and enhanced radiated power by electrically small antennas in the presence of nested metamaterial shells,” Phys. Rev. E., Vol. 72, 036602, 2005.
  • [19] R.W. Ziolkowski, A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Trans. Antennas Propag., Vol. AP-54, pp. 2113-2130, 2006.
  • [20] A. Alu, N. Engheta, A. Erentok, R.W. Ziolkowski, “Single-negative, double-negative and low-index metamaterials and their electromagnetic application,” IEEE Antennas and Propag. Mag., Vol. 49, pp. 23-36, 2007.
  • [21] R.W. Ziolkowski, A. Erentok, “At and beyond the Chu limit: passive and active broad bandwidth metamaterialbased efficient electrically small antennas,” IET Microwaves, Antennas & Propag., Vol. 1, pp. 116-128, 2007.
  • [22] A. Erentok, R.W. Ziolkowski, “A hybrid optimization method to analyze metamaterial-based electrically small antennas,” IEEE Trans. Antennas Propag., Vol. 55, pp. 731-741, 2007.
  • [23] A. Erentok, R.W. Ziolkowski, J.A. Nielsen, R.B. Greegor, C.G. Parazzoli, M.H. Tanielian, S.A. Cummer, B.I. Popa, T. Hand, D.C. Vier, S. Schultz, “Low frequency lumped element-based negative index metamaterial,” Appl. Phys. Lett., Vol. 91, Issue 18, pp. 184104 (3 pages), 2007.
  • [24] A. Erentok, R.W. Ziolkowski, “An efficient metamaterial-inspired electrically-small antenna,” Microw. Opt. Tech. Lett., Vol. 49, pp. 1287-1290, 2007.
  • [25] A. Erentok, R.W. Ziolkowski, “Two-dimensional efficient metamaterial-inspired electrically-small antenna,” Microw. Opt. Tech. Lett., Vol. 49, pp. 1669-1673, 2007
  • [26] C. Holloway, private communications, 2007.
  • [27] C.L. Holloway, D.A. Hill, J.M. Ladbury, P.Wilson, G. Koepke, J. Coder, “On the use of reverberation chambers to simulate a controllable Rician radio environment for the testing of wireless devices,”, IEEE Trans. Antennas Propag., Vol. 54, pp. 3167-3177, 2006.
  • [28] J. Ladbury, G. Koepke, D. Camell, ”Evaluation of NASA Langley Research Center mode-stirred chamber facility”, NIST Technical Note 1508, pp. 106, 1999.