A cell-based 5-MHz on-chip clock generator

A cell-based 5-MHz on-chip clock generator

A cell-based 5-MHz on-chip clock generator for smart sensing applications is presented. By exploiting relative reference modeling, our proposed design can dynamically track both voltage and temperature variations after four-point chip calibrations. The proposed on-chip clock generator is fabricated using a 90-nm CMOS process, the frequency stability is 160 ppm/ ◦ C and 72 ppm/mV over 0 ◦ C to 75 ◦ C and 0.9 V to 1.1 V, and the settling time of the proposed on-chip clock generator is 5.12 s. The proposed on-chip clock generator was implemented with standard cells that can greatly reduce the design complexity and design time for on-chip oscillators.

___

  • [1] Lee J, Cho SH. A 10MHz 80  W 67ppm/ ◦ C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18  m CMOS. In: IEEE Symposia on VLSI Technology and Circuits Conference; 16{18 June 2009; Kyoto, Japan. New York, NY, USA: IEEE. pp. 226-227.
  • [2] Sundaresan K, Allen PE, Ayazi F. Process and temperature compensation in a 7-MHz CMOS clock oscillator. IEEE J Solid-St Circ 2006; 41; 433-442.
  • [3] Smedt VD, Wit PD, Vereecken W, Steyaert MSJ. A 66  W 86 ppm/ ◦ C fully-integrated 6 MHz Wienbridge oscillator with a 172 dB phase noise FOM. IEEE J Solid-St Circ 2009; 44; 1990-2001.
  • [4] Ueno K, Asai T, Amemiya Y. A 30-MHz 90-ppm/ ◦ C fully-integrated clock reference generator with frequency- locked loop. In: IEEE European Solid-State Circuits Conference; 14{18 September 2009; Athens, Greece. New York, NY, USA: IEEE. pp. 392-395.
  • [5] Park YS, Choi WY. On-chip compensation of ring VCO oscillation frequency changes due to supply noise and process variation. IEEE T Circuits-II 2012; 59; 73-77.
  • [6] Tokunaga Y, Sakiyama S, Matsumoto A, Dosho S. An on-chip CMOS relaxation oscillator with voltage averaging feedback. IEEE J Solid-St Circ 2010; 45; 1150-1158.
  • [7] Tokairin T, Nose K, Takeda K, Noguchi K, Maeda T, Kawai K, Mizuno M. A 280nW, 100kHz, 1-cycle start-up time, on-chip CMOS relaxation oscillator employing a feedforward period control scheme. In: IEEE Symposia on VLSI Technology and Circuits Conference; 13{15 June 2012; Honolulu, HI, USA. New York, NY, USA: IEEE. pp. 16-17.
  • [8] Tsubaki K, Hirose T, Osaki Y, Shiga S, Kuroki N, Numa M. A 6.66-kHz, 940-nW, 56ppm/ ◦ C, fully on-chip PVT variation tolerant CMOS relaxation oscillator. In: IEEE International Conference on Electronics, Circuits and Systems Conference; 9{12 December 2012; Seville, Spain. New York, NY, USA: IEEE. pp. 97-100.
  • [9] Sebastiano F, Breems LJ, Makinwa KAA, Drago S, Leenaerts MW, Nauta B. A 65-nm CMOS temperature- compensated mobility-based frequency reference for wireless sensor networks. IEEE J Solid-St Circ 2011; 46; 1544- 1552.
  • [10] Sebastiano F, Breems LJ, Makinwa KAA, Drago S, Leenaerts DMW, Nauta B. A low-voltage mobility-based frequency reference for crystal-less ULP radios. IEEE J Solid-St Circ 2009; 44; 2002-2009.
  • [11] Kashmiri SM, Souri K, Makinwa KAA. A scaled thermal-diffusivity-based 16 MHz frequency reference in 0.16  m CMOS. IEEE J Solid-St Circ 2012; 47; 1535-1545.
  • [12] Kashmiri M, Pertijs M, Makinwa K. A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of  0.1% from -55 ◦ C to 125 ◦ C. In: IEEE International Solid-State Circuits Conference; 7{11 February 2010; San Francisco, CA, USA. New York, NY, USA: IEEE. pp. 74-75.
  • [13] Yu CY, Yu JY, Lee CY. A low voltage all-digital on-chip oscillator using relative reference modelling. IEEE T VLSI Syst 2012; 20; 1615-1620.
  • [14] Zhang X, Mukhopadhyay I, Dokania R, Apsel AB. A 46-  W self-calibrated Gigahertz VCO for low-power radios. IEEE T Circuits-II 2011; 58; 847-851.
  • [15] Zhang X, Dokania R, Mukadam M, Apsel A. A successive approximation based process-invariant ring oscillator. In: IEEE International Conference on Circuits and Systems; 12{15 December 2010; Athens, Greece. New York, NY, USA: IEEE. pp. 1057-1060.
  • [16] Sadeghi N, Bakhtiar AS, Mirabbasi S. A 0.0007-mm 2 108-ppm/ ◦ C 1-MHz relaxation oscillator for high-temperature applications up to 180 ◦ C in 0.13-  m CMOS. IEEE T Circuits-I 2013; 60; 1692-1701.
  • [17] Lee J, Cho S. A 1.4-  W 24.9-ppm/ ◦ C current reference with process-insensitive temperature compensation in 0.18-  m CMOS. IEEE J Solid-St Circ 2012; 47; 2527-2533.
  • [18] Hsiao KJ. A 32.4 ppm/ ◦ C 3.2-1.6V self-chopped relaxation oscillator with adaptive supply generation. In: IEEE Symposia on VLSI Technology and Circuits Conference; 13-15 June 2012; Honolulu, HI, USA. New York, NY, USA: IEEE. pp. 14-15.
  • [19] Chiang YH, Liu SI. A submicrowatt 1.1-MHz CMOS relaxation oscillator with temperature compensation. IEEE T Circuits-II 2013; 60; 837-841.
  • [20] Shih YC, Otis B. An on-chip tunable frequency generator for crystal-less low-power WBAN radio. IEEE T Circuits-II 2013; 60; 187-191.
  • [21] Satoh Y, Kobayashi H, Miyaba T, Kousai S. A 2.9mW, +/- 85ppm accuracy reference clock generator based on RC oscillator with on-chip temperature calibration. In: IEEE Symposia on VLSI Technology and Circuits Conference; 10{13 June 2014; Honolulu, HI, USA. New York, NY, USA: IEEE. pp. 1-2.
  • [22] Cao Y, Leroux P, Cock WD, Steyaert M. A 63,000 Q-factor relaxation oscillator with switched-capacitor integrated error feedback. In: IEEE International Solid-State Circuits Conference; 17{21 February 2013; San Francisco, CA, USA. New York, NY, USA: IEEE. pp. 186-187.
  • [23] Lee J, Park P, Cho S, Je M. A 4.7MHz 53  W fully differential CMOS reference clock oscillator with -22dB worst- case PSNR for miniaturized SoCs. In: IEEE International Solid-State Circuits Conference; 22{26 February 2015; San Francisco, CA, USA. New York, NY, USA: IEEE. pp. 106-107.