Robust optimal operation of smart distribution grids with renewable based generators

Modern distribution systems are equipped with various distributed energy resources DERs because of the importance of local generation. These distribution systems encounter more and more uncertainties because of the ever-increasing use of renewable energies. Other sources of uncertainty, such as load variation and system components? failure, will intensify the unpredictable nature of modern distribution systems. Integrating energy storage systems into distribution grids can play a role as a flexible bidirectional source to accommodate issues from constantly varying loads and renewable resources. The overall functionality of these modern distribution systems is enhanced using communication and computational abilities in smart grid frameworks. Robust operation of these systems is effectively taken into consideration to manage the uncertainty, which offers an explicit way to control the desired conservativeness. This paper presents an optimal operating program for smart grids equipped with wind generators, controllable distributed generators, energy storage systems, and reactive power compensators. In order to make the studies more practical, uncertainty about wind generators and grid loads is taken into account. Furthermore, the presented operating program is robust in various conditions, i.e. there is no need to change the operating program in a wide range of probable states. The point estimation method and fuzzy clustering method are used for probabilistic assessment of the distribution system in the presence of uncertainties. The IEEE 37-node standard test system, which is a highly unbalanced system, is selected for the case study and the results are discussed comprehensively.

___

  • [1] Galvani S, Choogan M. Data clustering based probabilistic optimal power flow in power systems. IET Generation, Transmission & Distribution 2018; 13 (2): 181-188. doi: 10.1049/iet-gtd.2018.5832
  • [2] Rahbar K, Xu J, Zhang R. Real-time energy storage management for renewable integration in microgrid: An off-line optimization approach. IEEE Transactions on Smart Grid 2015; 6 (1): 124-134. doi: 10.1109/TSG.2014.2359004
  • [3] Yang Z, Wu R, Yang J, Long K, You P. Economical operation of microgrid with various devices via distributed optimization. IEEE Transactions on Smart Grid 2016; 7 (2): 857-867. doi: 10.1109/TSG.2015.2479260
  • [4] Battistelli C, Agalgoankar YP, Pal BC. Probabilistic dispatch of remote hybrid microgrids including battery storage and load management. IEEE Transactions on Smart Grid 2017; 8 (3): 1305-1317. doi: 10.1109/TSG.2016.2606560
  • [5] Nikmehr N, Najafi-Ravadanegh S. Optimal operation of distributed generations in micro-grids under uncertainties in load and renewable power generation using heuristic algorithm. IET Renewable Power Generation 2015; 9 (8): 982-990. doi: 10.1049/iet-rpg.2014.0357
  • [6] Wang Z, Chen B, Wang J, Kim J, Begovic MM. Robust optimization based optimal DG placement in microgrids. IEEE Transactions on Smart Grid 2014; 5 (5): 2173-2182. doi: 10.1109/TSG.2014.2321748
  • [7] Zare M, Niknam T, Azizipanah-Abarghooee R, Ostadi A. New stochastic bi-objective optimal cost and chance of operation management approach for smart microgrid. IEEE Transactions on Industrial Informatics 2016; 12 (6): 2031-2040. doi: 10.1109/TII.2016.2585379
  • [8] Bahmani-Firouzi B, Azizipanah-Abarghooee R. Optimal sizing of battery energy storage for micro-grid operation management using a new improved bat algorithm. International Journal of Electrical Power & Energy Systems 2014; 56: 42-54. doi: 10.1016/j.ijepes.2013.10.019
  • [9] Carpinelli G, Mottola F, Proto D. Probabilistic sizing of battery energy storage when time-of-use pricing is applied. Electric Power Systems Research 2016; 141: 73-83. doi: 10.1016/j.epsr.2016.07.013
  • [10] Chakraborty S, Okabe T. Robust energy storage scheduling for imbalance reduction of strategically formed energy balancing groups. Energy 2016; 114: 405-417. doi: 10.1016/j.energy.2016.07.170
  • [11] Craparo E, Karatas M, Singham DI. A robust optimization approach to hybrid microgrid operation using ensemble weather forecasts. Applied Energy 2017; 201: 135-147. doi: 10.1016/j.apenergy.2017.05.068
  • [12] Kou P, Gao F, Guan X. Stochastic predictive control of battery energy storage for wind farm dispatching: Using probabilistic wind power forecasts. Renewable Energy 2015; 80: 286-300. doi: 10.1016/j.renene.2015.02.001
  • [13] Soroudi A. Robust optimization based self scheduling of hydro-thermal Genco in smart grids. Energy 2013; 61: 262-271. doi: 10.1016/j.energy.2013.09.014
  • [14] Li P, Xu D, Zhou Z, Lee WJ, Zhao B. Stochastic optimal operation of microgrid based on chaotic binary particle swarm optimization. IEEE Transactions on Smart Grid 2016; 7 (1): 66-73. doi: 10.1109/TSG.2015.2431072
  • [15] Guggilam SS, Dall’Anese E, Chen YC, Dhople SV, Giannakis GB. Scalable optimization methods for distribution networks with high PV integration. IEEE Transactions on Smart Grid 2016; 7 (4): 2061-2070. doi: 10.1109/TSG.2016.2543264
  • [16] Ziadi Z, Taira S, Oshiro M, Funabashi T. Optimal power scheduling for smart grids considering controllable loads and high penetration of photovoltaic generation. IEEE Transactions on Smart Grid 2014; 5 (5): 2350-2359. doi: 10.1109/TSG.2014.2323969
  • [17] Arefifar SA, Ordonez M, Mohamed YA. VI controllability-based optimal allocation of resources in smart distribution systems. IEEE Transactions on Smart Grid 2016; 7 (3): 1378-1388. doi: 10.1109/TSG.2015.2476784
  • [18] Awad AS, El-Fouly TH, Salama MM. Optimal ESS allocation for load management application. IEEE Transactions on Power Systems 2015; 30 (1): 327-336. doi: 10.1109/TPWRS.2014.2326044
  • [19] Awad AS, El-Fouly TH, Salama MM. Optimal ESS allocation and load shedding for improving distribution system reliability. IEEE Transactions on Smart Grid 2014; 5 (5): 2339-2349. doi: 10.1109/TSG.2014.2316197
  • [20] Awad AS, El-Fouly TH, Salama MM. Optimal ESS allocation for benefit maximization in distribution networks. IEEE Transactions on Smart Grid 2017; 8 (4): 1668-1678. doi: 10.1109/TSG.2015.2499264
  • [21] Luh PB, Yu Y, Zhang B, Litvinov E, Zheng T et al. Grid integration of intermittent wind generation: a Markovian approach. IEEE Transactions on Smart Grid 2014; 5 (2): 732-741. doi: 10.1109/TSG.2013.2268462
  • [22] Zou K, Agalgaonkar AP, Muttaqi KM, Perera S. An analytical approach for reliability evaluation of distribution systems containing dispatchable and nondispatchable renewable DG units. IEEE Transactions on Smart Grid 2014; 5 (6): 2657-2665. doi: 10.1109/TSG.2014.2350505
  • [23] Abdeltawab HH, Mohamed YA. Robust operating zones identification for energy storage day-ahead operation. Sustainable Energy, Grids and Networks 2017; 10: 1-11. doi: 10.1016/j.segan.2017.02.002
  • [24] Liu S, Liu F, Ding T, Bie Z. Optimal allocation of reactive power compensators and energy storages in microgrids considering uncertainty of photovoltaics. Energy Procedia 2016; 103: 165-170. doi: 10.1016/j.egypro.2016.11.267
  • [25] Xiang Y, Liu J, Liu Y. Robust energy management of microgrid with uncertain renewable generation and load. IEEE Transactions on Smart Grid 2016; 7 (2): 1034-1043. doi: 10.1109/TSG.2014.2385801
  • [26] Simão HP, Jeong HB, Defourny B, Powell WB, Boulanger A et al. A robust solution to the load curtailment problem. IEEE Transactions on Smart Grid 2013; 4 (4): 2209-2219. doi: 10.1109/TSG.2013.2276754
  • [27] Mostafa HA, El Shatshat R, Salama MM. Optimal distribution systems operation using smart matching scheme (SMS) for smart grid applications. IEEE Transactions on Smart Grid 2014; 5 (4): 1938-1948. doi: 10.1109/TSG.2013.2294055
  • [28] Vallée F, Brunieau G, Pirlot M, Deblecker O, Lobry J. Optimal wind clustering methodology for adequacy evaluation in system generation studies using nonsequential Monte Carlo simulation. IEEE Transactions on Power Systems 2011; 26 (4): 2173–2184. doi: 10.1109/TPWRS.2011.2138726
  • [29] Gang L, Jinfu C, Defu C, Dongyuan S, Xianzhong D. Probabilistic assessment of available transfer capability considering spatial correlation in wind power integrated system. IET Generation, Transmission & Distribution 2013; 7 (12): 1527–1535. doi: 10.1049/iet-gtd.2013.0081
  • [30] Hagh MT, Amiyan P, Galvani S, Valizadeh N. Probabilistic load flow using the particle swarm optimisation clustering method. IET Generation, Transmission & Distribution 2017; 12 (3): 780–789. doi: 10.1049/iet-gtd.2017.0678
  • [31] Hasanvand S, Nayeripour M, Arefifar SA, Fallahzadeh-Abarghouei H. Spectral clustering for designing robust and reliable multi-MG smart distribution systems. IET Generation, Transmission & Distribution 2017; 12 (6): 1359– 1365. doi: 10.1049/iet-gtd.2017.0671
  • [32] Lami B, Bhattacharya K. Clustering technique applied to nodal reliability indices for optimal planning of energy resources. IEEE Transactions on Power Systems 2016; 31 (6): 4679–4690. doi: 10.1109/TPWRS.2015.2507061
  • 33] Munshi AA, Yasser ARM. Photovoltaic power pattern clustering based on conventional and swarm clustering methods. Solar Energy 2016; 124: 39–56. doi: 10.1016/j.solener.2015.11.010
  • [34] Galloway SJ, Elders IM, Burt GM, Sookananta B. Optimal flexible alternative current transmission system device allocation under system fluctuations due to demand and renewable generation. IET Generation, Transmission & Distribution 2010; 4 (6): 725-735. doi: 10.1049/iet-gtd.2009.0221
  • [35] Mohammadi M. Probabilistic harmonic load flow using fast point estimate method. IET Generation, Transmission & Distribution 2015; 9 (13): 1790-1799. doi: 10.1049/iet-gtd.2014.0669
  • [36] Morales JM, Perez-Ruiz J. Point estimate schemes to solve the probabilistic power flow. IEEE Transactions on Power Systems 2007; 22 (4): 1594-1601. doi: 10.1109/TPWRS.2007.907515
  • [37] Liu Y, Sioshansi R, Conejo AJ. Hierarchical clustering to find representative operating periods for capacityexpansion modeling. IEEE Transactions on Power Systems 2017; 33 (3): 3029–3039. doi: 10.1109/TPWRS.2017.2746379
  • [38] Dunn JC. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics 1973; 3 (3): 32-57. doi: 10.1080/01969727308546046
  • [39] Lai CS, Jia Y, McCulloch MD, Xu Z. Daily clearness index profiles cluster analysis for photovoltaic system. IEEE Transactions on Industrial Informatics 2017; 13 (5): 2322–2332. doi: 10.1109/TII.2017.2683519
  • [40] AlRashidi MR, El-Hawary ME. A survey of particle swarm optimization applications in electric power systems. IEEE Transactions on Evolutionary Computation 2009; 13 (4): 913-918. doi: 10.1109/TEVC.2006.880326
  • [41] Su X, Masoum MA, Wolfs PJ. PSO and improved BSFS based sequential comprehensive placement and real-time multi-objective control of delta-connected switched capacitors in unbalanced radial MV distribution networks. IEEE Transactions on Power Systems 2016; 31 (1): 612-622. doi: 10.1109/TPWRS.2015.2398361
  • [42] Haupt RL, Haupt SE. Practical Genetic Algorithms. 2nd ed. New York, NY, USA: Wiley, 2004.
  • [43] Kersting WH. Radial distribution test feeders. In: IEEE 2001 Power Engineering Society Winter Meeting; 2001. pp. 908-912.