Controlling waveguide modes using PT transformation media

We study rectangular waveguide modes loaded with parity-time PT transformation media derived by complex transformation optics CTO approach. PT transformation media are obtained through mirror symmetric complex coordinate transformations resulting in a balanced loss/gain media. It is shown that waveguide modes can be controlled by simply changing the imaginary part of the complex coordinate transformation while not affecting any other characteristic of the waveguide. The field distribution inside the waveguide can either be stretched towards the sides or squeezed at the center of the waveguide by employing different loading configurations.

___

  • [1] Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 2006; 312 (5781): 1780-1782. doi: 10.1126/science.1125907
  • [2] Leonhardt U. Optical conformal mapping. Science 2006; 312 (5781): 1777-1780. doi: 10.1126/science.1126493
  • [3] Ward AJ, Pendry JB. Refraction and geometry in Maxwell’s equations. Journal of Modern Optics 1996; 43 (4): 773-793. doi: 10.1080/09500349608232782
  • [4] Teixeira FL, Chew WC. Differential forms, metrics, and the reflectionless absorption of electromagnetic waves. Journal of Electromagnetic Waves and Applications 1999; 13 (5): 665-686. doi: 10.1163/156939399X01104
  • [5] Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006; 314 (5801): 977-980. doi: 10.1126/science.1133628
  • [6] Narimanov EE, Kildishev AV. Optical black hole: broadband omnidirectional light absorber. Applied Physics Letters 2009; 95 (4): 9041106. doi: 10.1063/1.3184594
  • [7] Chen H, Miao RX, Li M. Transformation optics that mimics the system outside a Schwarzschild black hole. Optics Express 2010; 18 (14): 15183-15188. doi: 10.1364/OE.18.015183
  • [8] Odabasi H, Teixeira FL, Chew WC. Impedance-matched absorbers and optical pseudo black holes. Journal of the Optical Society of America B 2011; 28 (5): 1317-1323. doi: 10.1364/JOSAB.28.001317
  • [9] Jiang WX, Chin JY, Cui TJ. Anisotropic metamaterial devices. Materials Today 2009; 12 (12): 26-33. doi: 10.1016/S1369-7021(09)70314-1
  • [10] Kuzuoglu M. Analysis of perfectly matched double negative layers via complex coordinate transformations. IEEE Transactions on Antennas and Propagation 2006; 54 (12): 3695-3699. doi: 10.1109/TAP.2006.886489
  • [11] Popa BI, Cummer SA. Complex coordinates in transformation optics. Physical Review A 2011; 84 (6): 063837. doi: 10.1103/PhysRevA.84.063837
  • [12] Castaldi G, Savoia S, Galdi V, Alu A, Engheta N. PT metamaterials via complex coordinate transformation optics. Physical Review Letters 2013; 110 (17): 173901. doi: 10.1103/PhysRevLett.110.173901
  • [13] Savoia S, Castaldi G, Galdi V. Complex-coordinate non-Hermitian transformation optics. Journal of Optics 2016; 18 (4): 044027. doi: 10.1088/2040-8978/18/4/044027
  • [14] Odabasi H, Sainath K, Teixeira FL. Launching and controlling Gaussian beams from point sources via planar transformation optics. Physical Review B 2018; 97 (7): 075105. doi: 10.1103/PhysRevB.97.075105
  • [15] Fleury R, Sounas DL, Alu A. Negative refraction and planar focusing based on parity-time symmetric metasurfaces. Physical Review Letters 2014; 113: 023903.
  • [16] Alaeian H, Dionne JA. Parity-time-symmetric plasmonic metamaterials. Physical Review A 2014; 89: 033829.
  • [17] Odabasi H, Teixeira FL. Generalized Veselago-Pendry lenses via complex transformation optics. Optics Express 2019; 27:18 25670.
  • [18] Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ. Perfect metamaterial absorber. Physical Review Letters 2008; 100 (20): 207402. doi: 10.1103/PhysRevLett.100.207402
  • [19] Berenger JP. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics 1994; 114 (2): 185-200. doi: 10.1006/jcph.1994.1159
  • [20] Chew WC, Weedon WH. A 3D perfectly matched medium for modified Maxwell’s equations with stretched coordinates. Microwave and Optical Technology Letters 1994; 7 (13): 599-604. doi: 10.1002/mop.4650071304
  • [21] Sacks ZS, Kingsland DM, Lee R, Lee JF. A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Transactions on Antennas and Propagation 1995; 43 (12): 1460-1463. doi: 10.1109/8.477075
  • [22] Teixeira FL, Chew WC. Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates. IEEE Microwave and Guided Wave Letters 1997; 7 (11): 371-373. doi: 10.1109/75.641424
  • [23] Ziolkowski RW. The design of Maxwellian absorbers for numerical boundary conditions and for practical applications using engineered artificial materials. IEEE Transactions on Antennas and Propagation 1997; 45 (4): 656-671. doi: 10.1109/8.564092
  • [24] Keller JB, Streifer W. Complex rays with an application to Gaussian beams. Journal of the Optical Society of America 1971; 61 (1): 40-43. doi: 10.1364/JOSA.61.000040
  • [25] Deschamps GA. Gaussian beams as a bundle of complex rays. Electronics Letters 1971; 7 (23): 684-685. doi: 10.1049/el:19710467
  • [26] Felsen LB. Complex source point solution of the field equations and their relation to the propagation and scattering of the Gaussian beams. Symposia Matematica 1976; 18: 40-56.
  • [27] Pozar DM. Microwave Engineering (4th Edition). Hoboken, NJ, USA: John Wiley & Sons, 2011.
  • [28] Marqués R, Martel J, Mesa F, Medina F. Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides. Physical Review Letters 2002; 89 (18): 183901. doi: 10.1103/PhysRevLett.89.183901
  • [29] Hrabar S, Bartolic J, Sipus Z. Waveguide miniaturization using uniaxial negative permeability metamaterial. IEEE Transactions on Antennas and Propagation 2005; 53 (1): 110-119. doi: 10.1109/TAP.2004.840503
  • [30] Belov PA, Simovski CR. Subwavelength metallic waveguides loaded by uniaxial resonant structures. Physical Review E 2005; 72 (3): 036618. doi: 10.1103/PhysRevE.72.036618
  • [31] Antipov S, Spentzouris L, Liu W, Gai W, Power JG. Wakefield generation in metamaterial-loaded waveguides. Journal of Applied Physics 2007; 102 (3): 034906. doi: 10.1063/1.2767640
  • [32] Edwards B, Alu A, Young ME, Silveirinha M, Engheta N. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Physical Review Letters 2008; 100 (3): 033903. doi: 10.1103/PhysRevLett.100.033903
  • [33] Dong YD, Yang T, Itoh T. Substrate integrated waveguide loaded by complementary split-ring resonator and its application to miniaturized waveguide filters. IEEE Transactions on Microwave Theory and Techniques 2009; 57 (9): 2211-2223. doi: 10.1109/TMTT.2009.2027156
  • [34] Meng FY, Wu Q, Erni D, Li LW. Controllable metamaterial-loaded waveguides supporting backward and forward waves. IEEE Transactions on Antennas and Propagation 2011; 59(9): 3400-3411. doi: 10.1109/TAP.2011.2161540
  • [35] Odabasi H, Teixeira FL. Electric-field-coupled resonators as metamaterial loadings for waveguide miniaturization. Journal of Applied Physics 2013; 114 (21): 214901. doi: 10.1063/1.4837597
  • [36] Ozgun O, Kuzuoglu M. Utilization of anisotropic metamaterial layers in waveguide miniaturization and transitions. IEEE Microwave and Wireless Components Letters 2007; 17 (11): 754-756. doi: 10.1109/LMWC.2007.908039
  • [37] Donderici B, Teixeira FL. Metamaterial blueprints for reflectionless waveguide bends. IEEE Microwave and Wireless Components Letters 2008; 18 (4): 233-235. doi: 10.1109/LMWC.2008.918869
  • [38] Huangfu J, Xi S, Kong F, Zhang J, Chen H et al. Application of coordinate transformation in bent waveguides. Journal of Applied Physics 2008; 104 (1): 014502. doi: 10.1063/1.2949272
  • [39] Roberts DA, Rahm M, Pendry JB, Smith DR. Transformation-optical design of sharp waveguide bends and corners. Journal of Applied Physics 2008; 93 (25): 251111. doi: 10.1063/1.3055604
  • [40] Teixeira FL, Odabasi H, Warnick KF. Anisotropic metamaterial blueprints for cladding control of waveguide modes. Journal of the Optical Society of America B 2010; 27 (8): 1603-1609. doi: 10.1364/JOSAB.27.001603
  • [41] Wang Z, Luo Y, Cui W, Ma W, Peng L et al. Controlling the field distribution in waveguides with transformation optics. Applied Physics Letters 2009; 94 (23): 234101. doi: 10.1063/1.3152004
  • [42] Ozgun O, Kuzuoglu M. Transformation electromagnetics based analysis of waveguides with random rough or periodic grooved surface. IEEE Transactions on Microwave Theory and Techniques 2013; 61 (2): 709-719. doi: 10.1109/TMTT.2012.2231428
  • [43] Sun L, Yang X, Gao J. Loss-compensated broadband epsilon-near-zero metamaterials with gain media. Applied Physics Letters 2013; 103 (20): 201109. doi: 10.1063/1.4831768
  • [44] Ye D, Wang Z, Xu K, Li H, Huangfu J et al. Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. Physical Review Letters 2013; 111 (18): 187402. doi: 10.1103/PhysRevLett.111.187402
  • [45] Ye D, Chang K, Ran L, Xin H. Microwave gain medium with negative refractive index. Nature Communications 2014; 5: 5841. doi: 10.1038/ncomms6841