A fabrication-oriented remeshing method for auxetic pattern extraction

We propose a method for extracting auxetic patterns from meshes for fabrication by modifying the existing mesh primitives directly and fully automatically. This direct approach is novel in the sense that most of the fabricationoriented surface tiling methods introduce additional primitives, such as curve networks in an interactive semiautomatic framework. Our method is based on a remeshing procedure that converts a given quad mesh with arbitrary topology into our desired structure that is ready to be fabricated. The main advantages of establishing auxetic patterns on meshes are the achieved flexibility using cheap inflexible materials as well as less material usage and fabrication time, as demonstrated in our results.

___

  • [1] Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y et al. The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design 2015; 69: 65–89.
  • [2] Ma C, Wei LY, Tong X. Discrete element textures. ACM Transactions on Graphics 2011; 30 (4): 62.
  • [3] Praun E, Finkelstein A, Hoppe H. Lapped textures. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques; New Orleans, LA, USA; 2000. pp. 465–470.
  • [4] Lefebvre S, Hoppe H. Appearance-space texture synthesis. ACM Transactions on Graphics 2006; 25 (3): 541–548.
  • [5] Zhou K, Huang X, Wang X, Tong Y, Desbrun M et al. Mesh quilting for geometric texture synthesis. ACM Transactions on Graphics 2006; 25 (3): 690–697.
  • [6] Garg A, Sageman-Furnas AO, Deng B, Yue Y, Grinspun E et al. Wire mesh design. ACM Transactions on Graphics 2014; 33 (4): 66–1.
  • [7] Torres C, Campbell T, Kumar N, Paulos E. Hapticprint: Designing feel aesthetics for digital fabrication. In: Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology; Charlotte, NC, USA; 2015. pp. 583–591.
  • [8] Dumas J, Lu A, Lefebvre S, Wu J, Dick C. By-example synthesis of structurally sound patterns. ACM Transactions on Graphics 2015; 34 (4): 137.
  • [9] Chen W, Zhang X, Xin S, Xia Y, Lefebvre S et al. Synthesis of filigrees for digital fabrication. ACM Transactions on Graphics 2016; 35 (4): 98.
  • [10] Schumacher C, Thomaszewski B, Gross M. Stenciling: Designing structurally-sound surfaces with decorative patterns. In: Benes B, Chen M (editors). Computer Graphics Forum. Volume 35. New York, NY, USA: The Eurographics Association and John Wiley & Sons Ltd, 2016, pp. 101–110.
  • [11] Zehnder J, Coros S, Thomaszewski B. Designing structurally-sound ornamental curve networks. ACM Transactions on Graphics 2016; 35 (4): 99.
  • [12] Zhao H, Gu F, Huang QX, Garcia J, Chen Y et al. Connected fermat spirals for layered fabrication. ACM Transactions on Graphics 2016; 35 (4): 100.
  • [13] Jacobson A, Baran I, Kavan L, Popović J, Sorkine O. Fast automatic skinning transformations. ACM Transactions on Graphics 2011; 31 (4): 77.
  • [14] Sahillioglu Y, Yemez Y. Minimum-distortion isometric shape correspondence using EM algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 2012; 34 (11): 2203–2215.
  • [15] Spillmann J, Teschner M. Cosserat nets. IEEE Transactions on Visualization and Computer Graphics 2009; 15 (2): 325–338.
  • [16] Wolff K, Poranne R, Glauser O, Sorkine-Hornung O. Packable springs. Computer Graphics Forum 2018; 37 (2): 251-262.
  • [17] Perez J, Thomaszewski B, Coros S, Bickel B, Canabal JA et al. Design and fabrication of flexible rod meshes. ACM Transactions on Graphics 2015; 34 (4): 138.
  • [18] Panetta J, Zhou Q, Malomo L, Pietroni N, Cignoni P et al. Elastic textures for additive fabrication. ACM Transactions on Graphics 2015; 34 (4): 135.
  • [19] Schumacher C, Bickel B, Rys J, Marschner S, Daraio C et al. Microstructures to control elasticity in 3d printing. ACM Transactions on Graphics 2015; 34 (4): 136.
  • [20] Martinez J, Dumas J, Lefebvre S. Procedural Voronoi foams for additive manufacturing. ACM Transactions on Graphics 2016; 35 (4): 44.
  • [21] Konakovic M, Crane K, Deng B, Bouaziz S, Piker D et al. Beyond developable: computational design and fabrication with auxetic materials. ACM Transactions on Graphics 2016; 35 (4): 89.
  • [22] Guseinov R, Miguel E, Bickel B. Curveups: shaping objects from flat plates with tension-actuated curvature. ACM Transactions on Graphics 2017; 36 (4): 64.
  • [23] Schumacher C, Marschner S, Cross M, Thomaszewski B. Mechanical characterization of structured sheet materials. ACM Transactions on Graphics 2018; 37 (4): 148.
  • [24] Wang W, Wang TY, Yang Z, Liu L, Tong X et al. Cost-effective printing of 3d objects with skin-frame structures. ACM Transactions on Graphics 2013; 32 (6): 177.
  • [25] Lu L, Sharf A, Zhao H, Wei Y, Fan Q et al. Build-to-last: strength to weight 3d printed objects. ACM Transactions on Graphics 2014; 33 (4): 97.
  • [26] Mueller S, Im S, Gurevich S, Teibrich A, Pfisterer L et al. Wireprint: 3d printed previews for fast prototyping. In: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology; Honolulu, HI, USA; 2014. pp. 273–280.
  • [27] Peng H, Wu R, Marschner S, Guimbretiere F. On-the-fly print: incremental printing while modelling. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems; San Jose, CA, USA; 2016. pp. 887–896.
  • [28] Wu R, Peng H, Guimbretiere F, Marschner S. Printing arbitrary meshes with a 5 dof wireframe printer. ACM Transactions on Graphics 2016; 35 (4): 101.
  • [29] Narain R, Samii A, O’Brien JF. Adaptive anisotropic remeshing for cloth simulation. ACM Transactions on Graphics 2012; 31 (6): 152.
  • [30] Peng CH, Zhang E, Kobayashi Y, Wonka P. Connectivity editing for quadrilateral meshes. ACM Transactions on Graphics 2011; 30 (6): 141.