The igneous rock intrusion beneath Ambon and Seram islands, eastern Indonesia, based on the integration of gravity and magnetic inversion: its implications for geothermal energy resources

The igneous rock intrusion beneath Ambon and Seram islands, eastern Indonesia, based on the integration of gravity and magnetic inversion: its implications for geothermal energy resources

Ambon and Seram islands in eastern Indonesia are located in the convergence zone of three major plates, causing this area to have many geothermal manifestations on the surface. A subsurface geological study on Ambon and Seram has been conducted based on the integration of gravity and magnetic inversion modeling to determine the intrusion of igneous rock as a potential source of geothermal energy. The gravity and magnetic inversion utilized gravity and magnetic anomaly data from the World Gravity Map (WGM) and the Earth Magnetic Anomaly Grid (EMAG), as well as the CRUST 1.0 global earth crust model, as the constraints. In general, gravity and magnetic anomalies in the study area are compatible, in which the southern part of Ambon is dominated by high anomalies and the northern part is covered by low anomalies associated with the Seram trench. The high anomaly is thought to be related to the intrusion of igneous rocks underneath the surface that have cooling and are rich in magnetic minerals, while the low anomaly isrelated to the destruction zone due to subduction in the north of Seram. The gravity inversion shows the distribution of subsurface rock density ranging from 1.86 g cm–3 to 2.82 g cm–3, while magnetic inversion produces rock susceptibility contrast ranging from –0.0034 SI to 0.0058 SI. Based on Curie point depth analysis of magnetic data, the bottom depth of the magnetic source is estimated at 25 km. The3D subsurface model of Ambon and Seram based on gravity and magnetic inversion shows a massive and evident intrusion pattern with high rock density and susceptibility contrast down to a depth of 10 km. The distribution of high density and susceptibility is thought to have implications for geothermal resources in Ambon and Seram.

___

  • Abderbi J, Khattach D, Kenafi J (2017). Multiscale analysis of the geophysical lineaments of the High Plateaus (Eastern Morocco): structural implications. Journal of Materials and Environmental Science 8: 467-475.
  • Araffa SAS, El-Bohoty M, Abou Heleika M, Mekkawi M., Ismail E et al. (2018). Implementation of magnetic and gravity methods to delineate the subsurface structural features of the basement complex in central Sinai area, Egypt. NRIAG Journal of Astronomy and Geophysics 7: 162-174. doi: 10.1016/j. nrjag.2017.12.002
  • Audley-Charles MG, Ballantyne PD, Hall R (1988). MesozoicCenozoic rift-drift sequence of Asian fragments from Gondwanaland. Tectonophysics 155: 317-330. doi: 10.1016/0040-1951(88)90272-7
  • Audley-Charles MG, Carter DJ, Barber AJ, Norvick MS, Tjokrosapoetro S (1979). Reinterpretation of the geology of Seram: implications for the Banda Arcs and northern Australia. Journal of the Geological Society 136: 547-566.
  • Balmino G, Vales N, Sylvain B, Briais A (2012). Spherical harmonic modeling to ultra-high degree of Complete Bouguer and isostatic anomalies. Journal of Geodesy 86: 499-520. doi: 10.1007/s00190- 011-0533-4
  • Bektas O, Ravat D, Buyuksarac A, Bilim F, Ates A (2007). Regional geothermal characterisation of East Anatolia from aeromagnetic, heat flow and gravity data. Pure and Applied Geophysics 164: 975-998. doi: 10.1007/s00024-007-0196-5
  • Blakely RJ (1996). Potential Theory in Gravity and Magnetic Applications. Cambridge, UK: Cambridge University Press.
  • Bonvalot S, Balmino G, Briais A, Kuhn M, Peyrefitte A et al. (2012). World Gravity Map, 1:50.000.000. Paris, France: BGI-CGMWCNES-IRD.
  • Dolmaz NM, Hirasli MZ, Ustaomer T, Orbay N (2005). Curie point depth based on spectrum analysis of aeromagnetic data, West Anatolian Extensional Province, Turkey. Pure and Applied Geophysics 162: 571-590. doi: 10.1007/s00024-004-2622-2
  • Doo WB, Hsu SK, Tsai, CH, Huang YS (2009). Using analytic signal to determine magnetization/density ratios of geological structures. Geophysical Journal International 179 (1): 112-124. doi: 10.1111/j.1365-246x.2009.04297.x
  • Fichtner A, De Wit M, van Bergen M (2010). Subduction of continental lithosphere in the Banda Sea region: combining evidence from full waveform tomography and isotope ratios. Earth and Planetary Science Letters 297 (3-4): 405-412. doi: 10.1016/j.epsl.2010.06.042
  • Forte AM, Dziewonski AM, Woodward RL (1993). A spherical structure of the mantle, tectonic plate motion, non hydrostatic geoid, and topography of the core mantle boundary. Dynamic of the Earth’s deep interior and rotation. Geophysical Monograph Series 72: 135-166.
  • Hamilton WB (1979). Tectonics of the Indonesian Region (Report No. 1078), Professional Paper. Reston, VA, USA: USGS. doi: 10.3133/pp1078
  • Hansen RO, Pawlowski RS, Wang X (1987). Joint use of analytic signal and amplitude of horizontal gradient maxima for threedimensional gravity data interpretation. In: 1987 SEG Annual Meeting, Society of Exploration Geophysicists.
  • Hinschberger F, Malod JA, Réhault JP, Villeneuve M, Royer JY et al. (2005). Late Cenozoic geodynamic evolution of eastern Indonesia. Tectonophysics 404: 91-118. doi: 10.1016/j. tecto.2005.05.005
  • Hochstein MP, Sudarman S (2008). History of geothermal exploration in Indonesia from 1970 to 2000. Geothermics 37 (3): 220-266. doi: 10.1016/j.geothermics.2008.01.001
  • Honthaas C, Maury RC, Priadi B, Bellon H, Cotton J (1999). The PlioQuaternary Ambon arc, Eastern Indonesia. Tectonophysics 301: 261-281. doi: 10.1016/S0040-1951(98)00227-3
  • Hsieh HH, Chen CH, Lin PY, Yen HY (2014). Curie point depth from spectral analysis of magnetic data in Taiwan. Journal of Asian Earth Sciences 90: 26-33. doi: 10.1016/j.jseaes.2014.04.007
  • Hsu S, Sibuet J, Shyu C (1996). High‐resolution detection of geologic boundaries from potential‐field anomalies: an enhanced analytic signal technique. Geophysics 61: 373-386. doi: 10.1190/1.1443966
  • Hunt CP, Moskowitz BM, Banerjee SK (2013). Magnetic properties of rocks and minerals. In: Ahrens TJ (editor). Rock Physics & Phase Relations. Boulder, CO, USA: American Geophysical Union, pp. 189-204. doi: 10.1029/RF003p0189
  • Khamies AA, El-Tarras MM (2010). Surface and subsurface structures of Kalabsha area, southern Egypt, from remote sensing, aeromagnetic and gravity data. Egyptian Journal of Remote Sensing and Space Science 13 (1): 43-52. doi: 10.1016/j. ejrs.2010.07.006
  • Laske G, Masters G, Ma Z, Pasyanos M (2013). Update on CRUST1.0 - A 1-degree Global Model of Earth’s Crust. In: EGU General Assembly Conference Abstracts, p. EGU2013-2658.
  • Li Y, Oldenburg DW (1996). 3D inversion of magnetic data. Geophysics 61 (2): 394-408. doi: 10.1190/1.1443968
  • Lowrie W (2007). Fundamentals of Geophysics. Second Edition. Cambridge, UK: Cambridge University Press.
  • MacLeod IN, Jones K, Dai TF (1993). 3D analytic signal in the interpretation of total magnetic field data at low magnetic latitudes. Exploration Geophysics 24 (4): 679. doi: 10.1071/ eg993679
  • MacLeod NI, Ellis GR (2013). Magnetic vector inversion, a simple approach to the challenge of varying direction of rock magnetization. In: ASEG-PESA, Australia.
  • Marini L, Susangkyono AE (1999). Fluid geochemistry of Ambon Island (Indonesia). Geothermics 28: 189-204. doi: 10.1016/ S0375-6505(99)00003-6
  • Marotta AM, Spelta E, Rizzetto C (2006). Gravity signature of crustal subduction inferred from numerical modelling. Geophysical Journal International 166 (2): 923-938. doi: 10.1111/j.1365- 246x.2006.03058.x
  • Marson I, Klingele E (1993). Advantages of using the vertical gradient of gravity for 3D interpretation. Geophysics 58: 1588- 1595. doi: 10.1190/1.1443374
  • Maus S, Barckhausen U, Berkenbosch H, Bournas N, Brozena J et al. (2009). EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochemistry, Geophysics, Geosystems 10 (8): 1-12. doi: 10.1029/2009gc002471
  • Meyer B, Chulliat A, Saltus R (2017). Derivation and error analysis of the Earth Magnetic Anomaly Grid at 2 arc min Resolution Version 3 (EMAG2v3). Geochemistry, Geophysics, Geosystems 18 (12): 4522-4537. doi: 10.1002/2017gc007280
  • Milsom J, Sardjono, Susilo A (2001). Short-wavelength, highamplitude gravity anomalies around the Banda Sea, and the collapse of the Sulawesi orogen. Tectonophysics 333 (1-2): 61- 74. doi: 10.1016/s0040-1951(00)00267-5
  • Monnier C, Girardeau J, Permana H, Rehault JP, Bellon H et al. (2003). Dynamics and age of formation of the SeramAmbon ophiolites (Central Indonesia). Bulletin de la Société Géologique de France 174: 529-543. doi: 10.2113/174.6.529
  • Nabighian M (1972). The analytic signal of two‐dimensional magnetic bodies with polygonal cross‐section: its properties and use for automated anomaly interpretation. Geophysics 37: 507-517. doi: 10.1190/1.1440276
  • Nishijima J, Naritomi K (2017). Interpretation of gravity data to delineate underground structure in the Beppu geothermal field, central Kyushu, Japan. Journal of Hydrology Regional Studies 11: 84-95. doi: 10.1016/j.ejrh.2015.11.022
  • Pirttijarvi M (2008). GRABLOX; Gravity Interpretation and Modeling Using 3D Block Models, User’s Guide to Version 1. Oulu, Finland: Department of Physics Sciences, University of Oulu.
  • Pirttijarvi M (2012). BLOXER. Interactive Visualization and Editing Software for 3D Block Models, User’s Guide to Version 1.6c. Oulu, Finland: Department of Physics Sciences, University of Oulu.
  • Pirttijarvi M (2014). GRABLOX 2.1. Gravity Interpretation and Modelling Using 3D Block Models, User’s Guide to Version 2.1. Oulu, Finland: Department of Physics Sciences, University of Oulu.
  • Pirttijarvi M (2014). FOURPOT Potential Field Data Processing and Analysis of Using 2D Fourier Transform, User’s Guide to Version 1.3a. Oulu, Finland: Department of Physics Sciences, University of Oulu.
  • Poorter RPE, Varekamp JC, Sriwana T, Van Bergen MJ, Erfan RD et al. (1989). Geochemistry of hot springs and fumarolic gases from the Banda Arc. Netherlands Journal of Sea Research 24 (2-3): 323-331. doi: 10.1016/0077-7579(89)90158-0
  • Pownall JM, Forster MA, Hall R, Watkinson IM (2017). Tectonometamorphic evolution of Seram and Ambon, eastern Indonesia: insights from 40 Ar/39 Ar geochronology. Gondwana Research 44: 35-53. doi: 10.1016/j.gr.2016.10.018
  • Pownall JM, Hall R, Lister GS (2016). Rolling open Earth’s deepest forearc basin. Geology 44 (11): 947-950. doi: 10.1130/g38051.1
  • Roest W, Verhoef J, Pilkington M (1992). Magnetic interpretation using the 3D analytic signal. Geophysics 57: 116-125. doi: 10.1190/1.1443174
  • Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A et al. (2009). Global multi-resolution topography synthesis. Geochemistry, Geophysics, Geosystems 10 (3): 1-9. doi: 10.1029/2008gc002332
  • Saada SA (2016). Curie point depth and heat flow from spectral analysis of aeromagnetic data over the northern part of Western Desert, Egypt. Journal of Applied Geophysics 134: 100-111. doi: 10.1016/j.jappgeo.2016.09.003
  • Saibi H, Nishijima J, Ehara S, Aboud E (2006). Integrated gradient interpretation techniques for 2D and 3D gravity data interpretation. Earth Planets Space 58: 815-821. doi: 10.1186/ BF03351986
  • Tanaka A, Okubo Y, Matsubayashi O (1999). Curie point depth on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics 306: 461-470.
  • Thébault E, Purucker M, Whaler KA, Langlais B, Sabaka TJ (2010). The magnetic field of the Earth’s lithosphere. Space Science Reviews 155 (1-4): 95-127. doi: 10.1007/s11214-010-9667-6
  • Tjokrosapoetro S, Rusmana E, Suharsono (1993). Geologi Lembar Ambon, Maluku, skala 1 : 250.000. Pusat Penelitian dan Pengembangan Geologi. Jakarta, Indonesia: Departemen Pertambangan dan Energi (in Indonesian).
  • Van Bemmelen RWI (1949). The geology of Indonesia. Govt. Print. Off.; sole agents, Nijhoff, The Hague.
  • Villeneuve M, Martini R, Bellon H, Réhault JP, Cornée JJ et al. (2010). Deciphering of six blocks of Gondwanan origin within Eastern Indonesia (South East Asia). Gondwana Research 18 (2-3): 420-437. doi: 10.1016/j.gr.2009.12.01
  • Widiwijayanti C, Tiberi C, Deplus C, Diament M, Mikhailov V et al. (2004). Geodynamic evolution of the northern Molucca Sea area (Eastern Indonesia) constrained by 3D gravity field inversion. Tectonophysics 386: 203-222. doi: 10.1016/j. tecto.2004.05.003
  • Widiyantoro S, Pesicek JD, Thurber CH (2011). Complex structure of the lithospheric slab beneath the Banda arc, eastern Indonesia depicted by a seismic tomographic model. Research in Geophysics 1 (1): 1. doi: 10.4081/rg.2011.e1
  • Widodo S, Kasbani, Sulaeman B, Sumardi E, Lim D (2007). POTENSI PANAS BUMI WILAYAH KABUPATEN BURU – MALUKU. Kelompok Kerja Panas Bumi. Jakarta, Indonesia: PSDG (in Indonesian).
  • Yadav PK, Adhikari PK, Srivastava S, Maurya VP, Tripathi A et al. (2018). Lithologic boundaries from gravity and magnetic anomalies over Proterozoic Dalma volcanics. Journal of Earth System Science 127 (2): 17. doi: 10.1007/s12040-018-0918-3
  • Zhu L, Pan X, Sun J (2016). Visualization and dissemination of global crustal models on virtual globes. Computers & Geosciences 90: 34-40. doi: 10.1016/j.cageo.2016.01.015