The igneous rock intrusion beneath Ambon and Seram islands, eastern Indonesia, based on the integration of gravity and magnetic inversion: its implications for geothermal energy resources
The igneous rock intrusion beneath Ambon and Seram islands, eastern Indonesia, based on the integration of gravity and magnetic inversion: its implications for geothermal energy resources
Ambon and Seram islands in eastern Indonesia are located in the convergence zone of three major plates, causing this area to have many geothermal manifestations on the surface. A subsurface geological study on Ambon and Seram has been conducted based on the integration of gravity and magnetic inversion modeling to determine the intrusion of igneous rock as a potential source of geothermal energy. The gravity and magnetic inversion utilized gravity and magnetic anomaly data from the World Gravity Map (WGM) and the Earth Magnetic Anomaly Grid (EMAG), as well as the CRUST 1.0 global earth crust model, as the constraints. In general, gravity and magnetic anomalies in the study area are compatible, in which the southern part of Ambon is dominated by high anomalies and the northern part is covered by low anomalies associated with the Seram trench. The high anomaly is thought to be related to the intrusion of igneous rocks underneath the surface that have cooling and are rich in magnetic minerals, while the low anomaly isrelated to the destruction zone due to subduction in the north of Seram. The gravity inversion shows the distribution of subsurface rock density ranging from 1.86 g cm–3 to 2.82 g cm–3, while magnetic inversion produces rock susceptibility contrast ranging from –0.0034 SI to 0.0058 SI. Based on Curie point depth analysis of magnetic data, the bottom depth of the magnetic source is estimated at 25 km. The3D subsurface model of Ambon and Seram based on gravity and magnetic inversion shows a massive and evident intrusion pattern with high rock density and susceptibility contrast down to a depth of 10 km. The distribution of high density and susceptibility is thought to have implications for geothermal resources in Ambon and Seram.
___
- Abderbi J, Khattach D, Kenafi J (2017). Multiscale analysis of
the geophysical lineaments of the High Plateaus (Eastern
Morocco): structural implications. Journal of Materials and
Environmental Science 8: 467-475.
- Araffa SAS, El-Bohoty M, Abou Heleika M, Mekkawi M., Ismail
E et al. (2018). Implementation of magnetic and gravity
methods to delineate the subsurface structural features of the
basement complex in central Sinai area, Egypt. NRIAG Journal
of Astronomy and Geophysics 7: 162-174. doi: 10.1016/j.
nrjag.2017.12.002
- Audley-Charles MG, Ballantyne PD, Hall R (1988). MesozoicCenozoic rift-drift sequence of Asian fragments from
Gondwanaland. Tectonophysics 155: 317-330. doi:
10.1016/0040-1951(88)90272-7
- Audley-Charles MG, Carter DJ, Barber AJ, Norvick MS,
Tjokrosapoetro S (1979). Reinterpretation of the geology of
Seram: implications for the Banda Arcs and northern Australia.
Journal of the Geological Society 136: 547-566.
- Balmino G, Vales N, Sylvain B, Briais A (2012). Spherical harmonic
modeling to ultra-high degree of Complete Bouguer and isostatic
anomalies. Journal of Geodesy 86: 499-520. doi: 10.1007/s00190-
011-0533-4
- Bektas O, Ravat D, Buyuksarac A, Bilim F, Ates A (2007). Regional
geothermal characterisation of East Anatolia from aeromagnetic,
heat flow and gravity data. Pure and Applied Geophysics 164:
975-998. doi: 10.1007/s00024-007-0196-5
- Blakely RJ (1996). Potential Theory in Gravity and Magnetic
Applications. Cambridge, UK: Cambridge University Press.
- Bonvalot S, Balmino G, Briais A, Kuhn M, Peyrefitte A et al. (2012).
World Gravity Map, 1:50.000.000. Paris, France: BGI-CGMWCNES-IRD.
- Dolmaz NM, Hirasli MZ, Ustaomer T, Orbay N (2005). Curie point
depth based on spectrum analysis of aeromagnetic data, West
Anatolian Extensional Province, Turkey. Pure and Applied
Geophysics 162: 571-590. doi: 10.1007/s00024-004-2622-2
- Doo WB, Hsu SK, Tsai, CH, Huang YS (2009). Using analytic signal
to determine magnetization/density ratios of geological
structures. Geophysical Journal International 179 (1): 112-124.
doi: 10.1111/j.1365-246x.2009.04297.x
- Fichtner A, De Wit M, van Bergen M (2010). Subduction of
continental lithosphere in the Banda Sea region: combining
evidence from full waveform tomography and isotope ratios.
Earth and Planetary Science Letters 297 (3-4): 405-412. doi:
10.1016/j.epsl.2010.06.042
- Forte AM, Dziewonski AM, Woodward RL (1993). A spherical
structure of the mantle, tectonic plate motion, non hydrostatic
geoid, and topography of the core mantle boundary. Dynamic
of the Earth’s deep interior and rotation. Geophysical
Monograph Series 72: 135-166.
- Hamilton WB (1979). Tectonics of the Indonesian Region (Report
No. 1078), Professional Paper. Reston, VA, USA: USGS. doi:
10.3133/pp1078
- Hansen RO, Pawlowski RS, Wang X (1987). Joint use of analytic
signal and amplitude of horizontal gradient maxima for threedimensional gravity data interpretation. In: 1987 SEG Annual
Meeting, Society of Exploration Geophysicists.
- Hinschberger F, Malod JA, Réhault JP, Villeneuve M, Royer JY et
al. (2005). Late Cenozoic geodynamic evolution of eastern
Indonesia. Tectonophysics 404: 91-118. doi: 10.1016/j.
tecto.2005.05.005
- Hochstein MP, Sudarman S (2008). History of geothermal exploration
in Indonesia from 1970 to 2000. Geothermics 37 (3): 220-266.
doi: 10.1016/j.geothermics.2008.01.001
- Honthaas C, Maury RC, Priadi B, Bellon H, Cotton J (1999). The PlioQuaternary Ambon arc, Eastern Indonesia. Tectonophysics
301: 261-281. doi: 10.1016/S0040-1951(98)00227-3
- Hsieh HH, Chen CH, Lin PY, Yen HY (2014). Curie point depth from
spectral analysis of magnetic data in Taiwan. Journal of Asian
Earth Sciences 90: 26-33. doi: 10.1016/j.jseaes.2014.04.007
- Hsu S, Sibuet J, Shyu C (1996). High‐resolution detection of geologic
boundaries from potential‐field anomalies: an enhanced
analytic signal technique. Geophysics 61: 373-386. doi:
10.1190/1.1443966
- Hunt CP, Moskowitz BM, Banerjee SK (2013). Magnetic properties
of rocks and minerals. In: Ahrens TJ (editor). Rock Physics &
Phase Relations. Boulder, CO, USA: American Geophysical
Union, pp. 189-204. doi: 10.1029/RF003p0189
- Khamies AA, El-Tarras MM (2010). Surface and subsurface
structures of Kalabsha area, southern Egypt, from remote
sensing, aeromagnetic and gravity data. Egyptian Journal of
Remote Sensing and Space Science 13 (1): 43-52. doi: 10.1016/j.
ejrs.2010.07.006
- Laske G, Masters G, Ma Z, Pasyanos M (2013). Update on CRUST1.0
- A 1-degree Global Model of Earth’s Crust. In: EGU General
Assembly Conference Abstracts, p. EGU2013-2658.
- Li Y, Oldenburg DW (1996). 3D inversion of magnetic data.
Geophysics 61 (2): 394-408. doi: 10.1190/1.1443968
- Lowrie W (2007). Fundamentals of Geophysics. Second Edition.
Cambridge, UK: Cambridge University Press.
- MacLeod IN, Jones K, Dai TF (1993). 3D analytic signal in the
interpretation of total magnetic field data at low magnetic
latitudes. Exploration Geophysics 24 (4): 679. doi: 10.1071/
eg993679
- MacLeod NI, Ellis GR (2013). Magnetic vector inversion, a simple
approach to the challenge of varying direction of rock
magnetization. In: ASEG-PESA, Australia.
- Marini L, Susangkyono AE (1999). Fluid geochemistry of Ambon
Island (Indonesia). Geothermics 28: 189-204. doi: 10.1016/
S0375-6505(99)00003-6
- Marotta AM, Spelta E, Rizzetto C (2006). Gravity signature of crustal
subduction inferred from numerical modelling. Geophysical
Journal International 166 (2): 923-938. doi: 10.1111/j.1365-
246x.2006.03058.x
- Marson I, Klingele E (1993). Advantages of using the vertical
gradient of gravity for 3D interpretation. Geophysics 58: 1588-
1595. doi: 10.1190/1.1443374
- Maus S, Barckhausen U, Berkenbosch H, Bournas N, Brozena J et
al. (2009). EMAG2: A 2-arc min resolution Earth Magnetic
Anomaly Grid compiled from satellite, airborne, and marine
magnetic measurements. Geochemistry, Geophysics,
Geosystems 10 (8): 1-12. doi: 10.1029/2009gc002471
- Meyer B, Chulliat A, Saltus R (2017). Derivation and error analysis
of the Earth Magnetic Anomaly Grid at 2 arc min Resolution
Version 3 (EMAG2v3). Geochemistry, Geophysics, Geosystems
18 (12): 4522-4537. doi: 10.1002/2017gc007280
- Milsom J, Sardjono, Susilo A (2001). Short-wavelength, highamplitude gravity anomalies around the Banda Sea, and the
collapse of the Sulawesi orogen. Tectonophysics 333 (1-2): 61-
74. doi: 10.1016/s0040-1951(00)00267-5
- Monnier C, Girardeau J, Permana H, Rehault JP, Bellon H et
al. (2003). Dynamics and age of formation of the SeramAmbon ophiolites (Central Indonesia). Bulletin de la Société
Géologique de France 174: 529-543. doi: 10.2113/174.6.529
- Nabighian M (1972). The analytic signal of two‐dimensional
magnetic bodies with polygonal cross‐section: its properties
and use for automated anomaly interpretation. Geophysics 37:
507-517. doi: 10.1190/1.1440276
- Nishijima J, Naritomi K (2017). Interpretation of gravity data to
delineate underground structure in the Beppu geothermal
field, central Kyushu, Japan. Journal of Hydrology Regional
Studies 11: 84-95. doi: 10.1016/j.ejrh.2015.11.022
- Pirttijarvi M (2008). GRABLOX; Gravity Interpretation and
Modeling Using 3D Block Models, User’s Guide to Version 1.
Oulu, Finland: Department of Physics Sciences, University of
Oulu.
- Pirttijarvi M (2012). BLOXER. Interactive Visualization and Editing
Software for 3D Block Models, User’s Guide to Version 1.6c.
Oulu, Finland: Department of Physics Sciences, University of
Oulu.
- Pirttijarvi M (2014). GRABLOX 2.1. Gravity Interpretation and
Modelling Using 3D Block Models, User’s Guide to Version
2.1. Oulu, Finland: Department of Physics Sciences, University
of Oulu.
- Pirttijarvi M (2014). FOURPOT Potential Field Data Processing
and Analysis of Using 2D Fourier Transform, User’s Guide to
Version 1.3a. Oulu, Finland: Department of Physics Sciences,
University of Oulu.
- Poorter RPE, Varekamp JC, Sriwana T, Van Bergen MJ, Erfan RD
et al. (1989). Geochemistry of hot springs and fumarolic gases
from the Banda Arc. Netherlands Journal of Sea Research 24
(2-3): 323-331. doi: 10.1016/0077-7579(89)90158-0
- Pownall JM, Forster MA, Hall R, Watkinson IM (2017).
Tectonometamorphic evolution of Seram and Ambon,
eastern Indonesia: insights from 40 Ar/39 Ar geochronology.
Gondwana Research 44: 35-53. doi: 10.1016/j.gr.2016.10.018
- Pownall JM, Hall R, Lister GS (2016). Rolling open Earth’s deepest
forearc basin. Geology 44 (11): 947-950. doi: 10.1130/g38051.1
- Roest W, Verhoef J, Pilkington M (1992). Magnetic interpretation
using the 3D analytic signal. Geophysics 57: 116-125. doi:
10.1190/1.1443174
- Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A et
al. (2009). Global multi-resolution topography synthesis.
Geochemistry, Geophysics, Geosystems 10 (3): 1-9. doi:
10.1029/2008gc002332
- Saada SA (2016). Curie point depth and heat flow from spectral
analysis of aeromagnetic data over the northern part of
Western Desert, Egypt. Journal of Applied Geophysics 134:
100-111. doi: 10.1016/j.jappgeo.2016.09.003
- Saibi H, Nishijima J, Ehara S, Aboud E (2006). Integrated gradient
interpretation techniques for 2D and 3D gravity data
interpretation. Earth Planets Space 58: 815-821. doi: 10.1186/
BF03351986
- Tanaka A, Okubo Y, Matsubayashi O (1999). Curie point depth on
spectrum analysis of the magnetic anomaly data in East and
Southeast Asia. Tectonophysics 306: 461-470.
- Thébault E, Purucker M, Whaler KA, Langlais B, Sabaka TJ (2010).
The magnetic field of the Earth’s lithosphere. Space Science
Reviews 155 (1-4): 95-127. doi: 10.1007/s11214-010-9667-6
- Tjokrosapoetro S, Rusmana E, Suharsono (1993). Geologi Lembar
Ambon, Maluku, skala 1 : 250.000. Pusat Penelitian dan
Pengembangan Geologi. Jakarta, Indonesia: Departemen
Pertambangan dan Energi (in Indonesian).
- Van Bemmelen RWI (1949). The geology of Indonesia. Govt. Print.
Off.; sole agents, Nijhoff, The Hague.
- Villeneuve M, Martini R, Bellon H, Réhault JP, Cornée JJ et al.
(2010). Deciphering of six blocks of Gondwanan origin within
Eastern Indonesia (South East Asia). Gondwana Research 18
(2-3): 420-437. doi: 10.1016/j.gr.2009.12.01
- Widiwijayanti C, Tiberi C, Deplus C, Diament M, Mikhailov V et
al. (2004). Geodynamic evolution of the northern Molucca
Sea area (Eastern Indonesia) constrained by 3D gravity
field inversion. Tectonophysics 386: 203-222. doi: 10.1016/j.
tecto.2004.05.003
- Widiyantoro S, Pesicek JD, Thurber CH (2011). Complex structure
of the lithospheric slab beneath the Banda arc, eastern
Indonesia depicted by a seismic tomographic model. Research
in Geophysics 1 (1): 1. doi: 10.4081/rg.2011.e1
- Widodo S, Kasbani, Sulaeman B, Sumardi E, Lim D (2007). POTENSI
PANAS BUMI WILAYAH KABUPATEN BURU – MALUKU.
Kelompok Kerja Panas Bumi. Jakarta, Indonesia: PSDG (in
Indonesian).
- Yadav PK, Adhikari PK, Srivastava S, Maurya VP, Tripathi A et al.
(2018). Lithologic boundaries from gravity and magnetic
anomalies over Proterozoic Dalma volcanics. Journal of Earth
System Science 127 (2): 17. doi: 10.1007/s12040-018-0918-3
- Zhu L, Pan X, Sun J (2016). Visualization and dissemination of global
crustal models on virtual globes. Computers & Geosciences 90:
34-40. doi: 10.1016/j.cageo.2016.01.015