In situ magnetic susceptibility and gamma radiation data in the Candela-Monclova intrusive belt, Northeast Mexico: case studies of the Cerro Colorado and Cerro Marcelinos plutons

In situ magnetic susceptibility and gamma radiation data in the Candela-Monclova intrusive belt, Northeast Mexico: case studies of the Cerro Colorado and Cerro Marcelinos plutons

The Cerro Marcelinos (CM) and Cerro Colorado (CC) plutons are part of the Candela-Monclova intrusive belt (NE Mexico), which is mid-Eocene in age (43–35 Ma). It intrudes into the Sabinas Basin, primarily made up of limestones, of Lower and Upper Cretaceous age. Around several intrusions, including the CM and CC plutons, mineralizations are known. However, how much hidden mineralizations would occur is not known. Trends within the plutons and in contact aureoles are also poorly described at present. Therefore, we provide here in situ magnetic susceptibility (MS) and gamma ray spectrometry (GS) data along two composite transects,one in each pluton, to delineate such potential trends. The data show variations of 0.003 × 10–3 SI and 104 × 10–3 in MS and of 7.1 nGy/h and 196 nGy/h in GS with a clear relation to rock type and amount of metasomatism. The radioactive contents in the outcrops of contact metamorphic rocks indicate a contact metasomatism with differing degrees of alteration during emplacement of the plutons. The hostlimestones have magnetic minerals incorporated during the intrusion process. MS and GS indicate an increase in the degree of acidity towards the center of both plutons, possibly associated with the later stages of the magmatic differentiation process. The MS could divide the igneous rocks into two groups, weakly magnetic (group 1 with MS ≤ 3 × 10–3 SI) and strongly magnetic (group 2 with MS > 3 × 10–3 SI), associated with the magnetite and ilmenite series, respectively. These classes provide useful information regarding the internal magnetic zoning in the plutons, which can be associated with mineralizations of mainly Au and Cu. Mainly, the magnetite series (group 2) delimited more perspective zones for mineral exploration. This zoning in MS could guide future mineral exploration in both plutons.

___

  • Aydin A, Ferré EC, Aslan Z (2007). The magnetic susceptibility of granitic rocks as a proxy for geochemical composition: example from the Saruhan granitoids, NE Turkey. Tectonophysics 441 (1-4): 85-95. doi: 10.1016/j.tecto.2007.04.009
  • Batista-Rodríguez J, Proenza-Fernández J, Rodríguez-Vega A, LópezSaucedo F, Cázares-Carreón K (2017). Magnetic susceptibility and natural gamma radioactivity as indirect proxies for characterization of sandstones and limestones of the Sabinas basin. Geofizika 34: 19-43. doi: 10.15233/gfz.2017.34.6
  • Blevin PL, Chappell BW (1992). The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Transactions of the Royal Society of Edinburgh. Earth Sciences 83 (1-2): 305-216. doi: 10.1017/S0263593300007987
  • Bouchez JL (2000). Magnetic susceptibility anisotropy and fabrics in granites. Comptes Rendus de l’Académie des Sciences-Series IIA - Earth and Planetary Science 330 (1): 1-14. doi: 10.1016/ S1251-8050(00)00120-8
  • Bowen NL (1928). The Evolution of the Igneous Rocks. Princeton, NJ, USA: Princeton University Press.
  • Brimhal WH, Adams JAS (1969). Concentration changes of thorium, uranium and metals in hydrothermally altered Conway Granite, New Hampshire. Geochimica et Cosmochimica Acta 33 (10): 130-131. doi: 10.1016/0016-7037(69)90050-7
  • Carmichael RS (1989). Practical Handbook of Physical Properties of Rocks and Minerals. 1st ed. Boca Raton, FL, USA: CRC Press.
  • Chávez-Cabello G, Aranda-Gómez JJ, Iriondo-Perrones A (2009). Culminación de la Orogenia Laramide en la Cuenca de Sabinas, Coahuila, México. Boletín de la Asociación Mexicana de Geólogos Petrolero 54 (1): 78-89 (in Spanish).
  • Chiozzi P, Pasquale V, Verdoya M (2007). Radiometric survey for exploration of hydrothermal alteration in a volcanic area. Journal of Geochemical Exploration 93 (1): 13-20. doi: 10.1016/j.gexplo.2006.07.002
  • Clark DA (1997). Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. AGSO Journal of Australian Geology & Geophysics 17 (2): 83-103.
  • Crick RE, Ellwood BB, Hassani AE, Feist R, Hladil J (1997). Magnetosusceptibility event and cyclostratigraphy (MSEC) of the Eifelian-Givetian GSSP and associated boundary sequences in North Africa and Europe. Episodes 20 (3): 167-175. doi: epiiugs/1997/v20i3/004
  • DePaolo DJ (1981). Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters 53(2): 189-202. doi: 10.1016/0012- 821X(81)90153-9
  • Dickson BL, Scott KM (1997). Interpretation of aerial gamma ray surveys-adding the geochemical factors. AGSO Journal of Australian Geology & Geophysics 17 (2): 187-200.
  • Ellwood BB, Crick RE, El Hassani A (1999). The magnetosusceptibility event and cyclostratigraphy (MSEC) method used in geological correlation of Devonian rocks from Anti-Atlas Morocco. AAPG Bulletin 83 (7): 1119-1134. doi: 10.1306/E4FD2E8D1732-11D7-8645000102C1865D
  • Ellwood BB, Wenner DB (1981). Correlation of magnetic susceptibility with 180/160 data in late orogenic granites of the southern Appalachian Piedmont. Earth and Planetary of Science Letter 54 (2): 200-202. doi: 10.1016/0012-821X(81)90003-0
  • Freund S, Beier C, Krumm S, Haase KM (2013). Oxygen isotope evidence for the formation of andesitic dacitic magmas from the fast-spreading Pacific-Antarctic Rise by assimilationfractional crystallisation. Chemical Geology 347: 271-283. doi: 10.1016/j.chemgeo.2013.04.013
  • Goldhammer RK (1999). Mesozoic sequence stratigraphy and paleogeographic evolution of northeast Mexico. In: Bartolini C, Wilson JL, Lawton TF (editors). Mesozoic Sedimentary and Tectonic History of North-Central Mexico. 1st ed. Boulder, CO, USA: Geological Society of America, pp. 1-58. doi: 10.1130/0- 8137-2340-X.1
  • González-Ramos A, Martínez-Ramos C, Izaguirre-Ramos MA, Barbosa-Luna D, Santiago-Carrasco B (2008). Carta geológicominera Monclova G14-4. Coahuila y Nuevo León. Escala 1:250 000. Mexico City, Mexico: Servicio Geológico Mexicano (in Spanish).
  • Harenyama M, Tsuchiya N, Takeba M, Chida T (2006). Two dimensional measurement of radioactivity of granite rocks by photostimulated luminiscence technique. Geochemical Journal 34: 1-9.
  • Ishihara S (1977). The magnetite-series and ilmenite-series granitic rocks. Mining Geology 27 (145): 293-305. doi: 10.11456/ shigenchishitsu1951.27.293
  • Ishihara S, Hashimoto M, Machida M (2000). Magnetite/ilmenite series classification and magnetic susceptibility of MesozoicCenozoic batholiths in Peru. Resource Geology 50 (2): 123- 129. doi: 10.1111/j.1751-3928.2000.tb00062.x
  • Lapointe P, Morris WA, Harding KL (1986). Interpretation of magnetic susceptibility; a new approach to geophysical evaluation of the degree of rock alteration. Canadian Journal of Earth Sciences 23 (3): 393-401. doi: 10.1139/e86-041
  • Lecoanet H, Léveque F, Segura S (1999). Magnetic susceptibility in environmental applications: comparison of field probes. Physics of the Earth and Planetary Interiors 115(3-4): 191-204. doi: 10.1016/S0031-9201(99)00066-7
  • Maulana A, Watanabe K, Imai A, Yonezu K (2013). Origin of magnetite- and ilmenite-series granitic rocks in Sulawesi, Indonesia: magma genesis and regional metallogenic constraint. Procedia Earth and Planetary Science 6: 50-57. doi: 10.1016/j.proeps.2013.01.007
  • Oliveira DC, Dall’Agnol R, Corrêa da Silva J, Costa de Almeida J (2008). Gravimetric, radiometric and magnetic susceptibility study of the Paleoproterozoic Redenção and Bannach plutons, eastern Amazonian Craton, Brazil: implications for architecture and zoning of A-type granites. Journal of South American Earth Sciences 25 (1): 100-115. doi: 10.1016/j. jsames.2007.10.003
  • Oniku SA, Osazuwa IB, Meludu OC (2008). Preliminary report on magnetic susceptibility measurements on rocks within the Zaria granite batholith, Nigeria. Geofizika 25 (2): 203-213.
  • Padilla RJ, Sánchez RJ (1986). Post-Paleozoic Tectonics of Northeast Mexico and its role in the evolution of the Gulf of Mexico. Geofísica Internacional 25 (1): 157-206.
  • Santiago-Carrasco B, Chiapa-García R, Martínez-Zárate EG (2001). Carta geológico-minera La Gloria G14-A62, Coahuila, Escala 1:50 000. Mexico City, Mexico: Servicio Geológico Mexicano (in Spanish).
  • Sewell CR (1968). The Candela and Monclova Belts of igneous intrusions, a petrographic province in Nuevo León and Coahuila, México (Abstract). In: Annual Meeting of the Geological Society of America, Abstract with Programs, p. 273.
  • SGM (2005). Carta geológico-minera Candela G14-A54, escala 1:50 000, estado de Coahuila. Mexico City, Mexico: Servicio Geológico Mexicano (in Spanish).
  • Silva PF, Henry B, Marques FO, Font E, Mateus A et al. (2008). Magma flow, exsolution processes and rock metasomatism in the Great Messejana–Plasencia dyke (Iberian Peninsula). Geophysical Journal International 175 (2): 806-824. doi: 10.1111/j.1365-246X.2008.03920.x
  • Tarling DH, Hrouda F (editors) (1993). The Magnetic Anisotropy of Rocks. 1st ed. London, UK: Chapman & Hall.
  • Verdoya M, Chiozzi P, Pasquale V (2001). Heat producing radionuclides in metamorphic rocks of the Brianeonnaispiedmont zone (Maritime Alps). Eclogae Geologicae Helvetiae 94 (2): 1-7. doi: 10.5169/seals-168890
  • Whalen JB, Chappell BW (1988). Opaque mineralogy and mafic mineral chemistry of I- and S-type granites of the Lachlan fold belt, southeast Australia. American Mineralogist 73: 281-296
  • Wilson JL (1990). Basement structural controls on Mesozoic carbonates facies in northeastern Mexico: a review. In: Tucker ME, Wilson JL, Crevello PD, Sarg JR, Read JF (editors). Carbonate Platforms, Facies, Sequences and Evolution. 1st ed. Ghent, Belgium: International Association of Sedimentologists, pp. 235-255. doi: 10.1002/9781444303834.ch9