The case of the carbonatite-like dyke of the Madenska River complex at the Kriva Lakavica section in the Republic of Macedonia: oxygen and carbon isotopic constraints

The oxygen and carbon isotope compositions of carbonate samples from the carbonatite-like dyke of the Madenska River complex at the Kriva Lakavica section, samples of calcite skarns from the Damjan Fe-ore deposit and the Sasa Pb-Zn ore deposit, and samples of marbles from the Pohorje Mountains were analyzed to provide critical evidence in favor of the magmatic or sedimentary origin of this carbonatite-like dyke. We suggest that the carbonatite-like dyke is not a "normal" carbonatite, but instead represents melted carbonates, which can be associated with an unexposed, deep-seated, causative magmatic body. This dyke has a fluidal texture and carries xenoliths of ultramafic rocks that can be up to 35 cm in size. Its isotopic composition plots between primary unaltered carbonatites and marine carbonates, and ranges between 13.79? and 18.89? for Δ18OVSMOW and between -1.22? and 1.31? for Δ13CVPDB. These values are significantly lower than those observed in carbonatites analyzed during this study and range between 6.53? and 8.10? for δ18OVSMOW and between -5.82? and -4.32? for Δ13CVPDB, which is the primary isotope signature of most magmatic carbonatites. Similarly high δ18O and Δ13C values were found in skarns of the Damjan Fe deposit close to the Madanska River complex and in the Sasa Pb-Zn deposit, as well as in high-grade regional metamorphic calcitic marbles of the Pohorje massive. The emplacement levels of the carbonatite-like dyke, due to several tectonic processes, are uncertain. The type of country rocks (sedimentary carbonates, ultramafic, mafic, and granitic rocks), hydrothermal alternation, and metasomatic and regional metamorphic processes seem to be the most important parameters that affect the O and C isotopic patterns found in the Kriva Lakavica carbonatite-like dyke and in the investigated samples.

The case of the carbonatite-like dyke of the Madenska River complex at the Kriva Lakavica section in the Republic of Macedonia: oxygen and carbon isotopic constraints

The oxygen and carbon isotope compositions of carbonate samples from the carbonatite-like dyke of the Madenska River complex at the Kriva Lakavica section, samples of calcite skarns from the Damjan Fe-ore deposit and the Sasa Pb-Zn ore deposit, and samples of marbles from the Pohorje Mountains were analyzed to provide critical evidence in favor of the magmatic or sedimentary origin of this carbonatite-like dyke. We suggest that the carbonatite-like dyke is not a "normal" carbonatite, but instead represents melted carbonates, which can be associated with an unexposed, deep-seated, causative magmatic body. This dyke has a fluidal texture and carries xenoliths of ultramafic rocks that can be up to 35 cm in size. Its isotopic composition plots between primary unaltered carbonatites and marine carbonates, and ranges between 13.79? and 18.89? for Δ18OVSMOW and between -1.22? and 1.31? for Δ13CVPDB. These values are significantly lower than those observed in carbonatites analyzed during this study and range between 6.53? and 8.10? for δ18OVSMOW and between -5.82? and -4.32? for Δ13CVPDB, which is the primary isotope signature of most magmatic carbonatites. Similarly high δ18O and Δ13C values were found in skarns of the Damjan Fe deposit close to the Madanska River complex and in the Sasa Pb-Zn deposit, as well as in high-grade regional metamorphic calcitic marbles of the Pohorje massive. The emplacement levels of the carbonatite-like dyke, due to several tectonic processes, are uncertain. The type of country rocks (sedimentary carbonates, ultramafic, mafic, and granitic rocks), hydrothermal alternation, and metasomatic and regional metamorphic processes seem to be the most important parameters that affect the O and C isotopic patterns found in the Kriva Lakavica carbonatite-like dyke and in the investigated samples.

___

  • Andrade F, Möller P, Lüders V, Dulski P, Gilg H (1999). Hydrothermal rare earth elements mineralization in the Barra do Itapirapua carbonatite, southern Brazil: behaviour of selected trace elements and stable isotopes (C, O). Chem Geol 155: 91–113.
  • Bell K (1981). A review of the geochronology of the Precambrian of Saskatchewan-some clues to uranium mineralization. Min Mag 44: 371–378.
  • Bell K (1989). Carbonatites. London, UK: Unwin Hyman.
  • Bell K (1998). Radiogenic isotope constraints on relationships between carbonatites and associated silicate rocks—a brief review. J of Petrol 39: 1987–1996.
  • Bell K, Blenkinsop J (1987). Nd and Sr isotopic compositions of East African carbonatites: implications for mantle heterogeneity. Geol 15: 99–102.
  • Bell K, Blenkinsop J, Cole T, Menagh D (1982). Evidence from Sr isotopes for long-lived heterogeneities in the upper mantle. Nature 298: 251–225.
  • Bhowmik SK, Dasgupta S, Hoernes S, Bhattacharya PK (1995). Extremely high-temperature calcareous granulites from the Eastern Ghats, India; evidence for isobaric cooling, fluid buffering, and terminal channelized fluid flow. Eu J Min 7: 689–703.
  • Bilibajkić P (1965). Izveštaj o Geofizičkim Ispitivanjima Rudnog Reona Damjan-Bučim Stručen Fond na Rudnikot Bučim. Skopje, Macedonia: Nauka (in Macedonian).
  • Bončev G (1920). Petrografsko-Mineraloški Proučuvanija v Makedonija. Vol 13. Sofia, Bulgaria: Klon prirodomatičeski, sv. 5 (in Bulgarian).
  • Brady JB, Cheney JT, Rhodes AL, Vasquez A, Green C, Duvall M, Kogut A, Kaufman L, Kovaric D (1998). Isotope geochemistry of Proterozoic talc occurrences in Archean marbles of the Ruby Mountains, southwest Montana, USA. Geol Mat Res 1:1–41.
  • Cahen L, Snelling N, Delhal J, Vail vJ, Bonhomme M, Ledent D (1984). The Geochronology and Evolution of Africa. Vol. 512. Oxford, UK: Clarendon Press.
  • Casillas R, Demény A, Nagy G, Ahijado A, Fernández C (2011). Metacarbonatites in the basal complex of Fuerteventura (Canary Islands). The role of fluid/rock interactions during contact metamorphism and anatexis. Lithos 125: 503–520.
  • Dalton JA, Wood BJ (1993). The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Eart Planet Sci Lett 119: 511–525.
  • Deines P (1970). Mass spectrometer correction factors for the determination of small isotopic composition variations of carbon and oxygen. Int J Mass Spec Ion Phys 4: 283–295.
  • Deines P (1989). Stable Isotope Variations in Carbonatites: Genesis and Evolution. London, UK: Unwin Hyman.
  • Eriksson S (1989). Phalaborwa: A Saga of Magmatism, Metasomatism and Miscibility Carbonatites, Genesis and Evolution. London, UK: Unwin Hyman.
  • Fanelli M, Cava N, Wyllie P (1986). Calcite and dolomite without portlandite at a new eutectic in CaO–MgO–CO2–H2O with applications to carbonatites. Morphology and phase of minerals. In: Proceedings of the 13th General Meeting of the International Mineralogical Association. Bulgarian Academy of Science, Sofia, Bulgaria.
  • Freda C, Gaeta M, Misiti V, Mollo S, Dolfi D, Scarlato P (2008). Magma–carbonate interaction: an experimental study on ultrapotassic rocks from Alban Hills (Central Italy). Lithos 101: 397–415.
  • Frezzotti ML, De Astis G, Dallai L, Ghezzo C (2007). Coexisting calcalkaline and ultrapotassic magmatism at Monti Ernici, Mid Latina Valley (Latium, central Italy). Eu J Min 19: 479–497.
  • Friedman I, O’Neil JR (1977). Compilation of stable isotope fractionation factors of geochemical interest. In: Data of Geochemistry. 6th ed. Reston, VA, USA: USGS, Paper 440-KK.
  • Gittins J (1989). The Origin and Evolution of Carbonatite Magmas Carbonatites: Genesis and Evolution. London, UK: Unwin Hyman.
  • Grunau H, Lehner P, Cleintuar M, Allenbach P, Bakker G (1975). New radiometric ages and seismic data from Fuerteventura (Canary Islands), Maio (Cape Verde Islands) and Sao Tome (Gulf of Guinea). In: Borradaile GJ, Ritsema AR, Rondeel HE, Simon OJ, editors. Progress in Geodynamics. Amsterdam, the Netherlands: Royal Netherlands Academy of Arts and Science, pp. 90–118.
  • Harmer R, Gittins J (1998). The case for primary, mantle-derived carbonatite magma. J Petrol 39: 1895–1903.
  • Harmer R, Lee C, Eglington B (1998). A deep mantle source for carbonatite magmatism: evidence from the nephelinites and carbonatites of the Buhera district, SE Zimbabwe. Eart Planet Sci Lett 158: 131–142.
  • Hay R, O’Neil J (1983). Carbonatite tuffs in the Laetolil beds of Tanzania and the Kaiserstuhl in Germany. Contrib Min Petrol 82: 403–406.
  • Heinrich EW, von Eckermann H (1966). The Geology of Carbonatites. Chicago, IL, USA: Rand McNally.
  • Hinterlechner-Ravnik A (1973). Pohorske metamorfne kamenine II = The Metamorphic Rocks of Pohorje Mountains II. Geologija 245–264 (in Slovenian).
  • Hinterlechner-Ravnik A (1974). Pohorske metamorfne kamenine = The Metamorphic Rocks of Pohorje Mountains. Geologija 505–507 (in Slovenian).
  • Hoernle K, Tilton G, Le Bas M, Duggen S, Garbe-Schönberg D (2002). Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib Min Petrol 142: 520–542.
  • Horstmann UE, Verwoerd WJ (1997). Carbon and oxygen isotope variations in southern African carbonatites. J Afri Eart Sci 25: 115–136.
  • Houzar S, Novak M (2002). Marbles with carbonatite-like geochemical signature from variegated units of the Bohemian Massif, Czech Republic, and their geological significance. J Geosci 47: 103–110.
  • Huang X, Sun B, Pan J, Zhang R (1995). The ages of igneous rocks from eastern Qinling of north China platform and the crustal growth and reworking of the terrane. Acta Petrol Sin 11: 171– 178.
  • Iacono Marziano G, Gaillard F, Pichavant M (2007). Limestone assimilation and the origin of CO2 emissions at the Alban Hills (Central Italy): Constraints from experimental petrology. J Volc Geoth Res 166: 91–105.
  • Iacono Marziano G, Gaillard F, Pichavant M (2008). Limestone assimilation by basaltic magmas: an experimental re-assessment and application to Italian volcanoes. Contrib Min Petrol 155: 719–738.
  • Iacono Marziano G, Gaillard F, Scaillet B, Pichavant M, Chiodini G (2009). Role of non-mantle CO2 in the dynamics of volcano degassing: The Mount Vesuvius example. Geology 37: 319–322.
  • Ivanov T (1987-1988). Carbonatites of Kriva Lakavica. Geologica Macedonica 3: 79–116.
  • Karimzadeh Somarin A, Moayyed M (2002). Granite- and gabbrodiorite-associated skarn deposits of NW Iran. Ore Geol Rev 20: 127–138.
  • Keith M, Weber J (1964). Carbon and oxygen isotopic composition of selected limestones and fossils. Geochim Cosmochim Acta 28: 1787–1816.
  • Keller J, Hoefs J (1995). Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Bell K, Keller J, editors. Carbonatite Volcanism. Berlin, Germany: Springer, pp 113–123.
  • Kjarsgaard B, Hamilton D, Peterson T (1995). Peralkaline nephelinite/carbonatite liquid immiscibility: comparison of phase compositions in experiments and natural lavas from Oldoinyo Lengai. In: Bell K, Keller J, editors. Carbonatite Volcanism. Berlin, Germany: Springer, pp 163–190.
  • Krishnamurthy R, Meyers PA, Lovan NA (2000). Isotopic evidence of sea-surface freshening, enhanced productivity, and improved organic matter preservation during sapropel deposition in the Tyrrhenian Sea. Geol 28: 263–266.
  • Kyser TK (1990). Stable isotopes in the continental lithospheric mantle. In: Menzies M, editor.  The Continental Lithosphere. Oxford, UK: Clarendon Press, pp. 127–156.
  • Le Bas M, Ba-Bttat M, Taylor R, Milton J, Windley B, Evins P (2004). The carbonatite-marble dykes of Abyan Province, Yemen Republic: the mixing of mantle and crustal carbonate materials revealed by isotope and trace element analysis. Min Petrol 82: 105–135.
  • Le Bas M, Subbarao K, Walsh J (2002). Metacarbonatite or marble?— the case of the carbonate, pyroxenite, calcite–apatite rock complex at Borra, Eastern Ghats, India. J Asian Eart Sci 20: 127–140.
  • Le Maitre RRW (2002). Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks. Cambridge, UK: Cambridge University Press.
  • Lentz DR (1998). Petrogenetic evolution of felsic volcanic sequences associated with Phanerozoic volcanic-hosted massive sulphide systems: the role of extensional geodynamics. Ore Geol Rev 12: 289–327.
  • Lentz DR (1999). Carbonatite genesis: a reexamination of the role of intrusion-related pneumatolytic skarn processes in limestone melting. Geology 27: 335–338.
  • Liu Y, Berner Z, Massonne H-J, Zhong D (2006). Carbonatite-like dykes from the eastern Himalayan syntaxis: geochemical, isotopic, and petrogenetic evidence for melting of metasedimentary carbonate rocks within the orogenic crust. J Asian Eart Sci 26: 105–120.
  • Majer V, Lugović B (1991). Metamorfne stijene s alkalnim amfibolima (“Glaukofanski škriljci”) u Jugoslaviji (Metamorphic rocks with alkalic amphiboles (“glaucophane schists”) in Yugoslavia)). Rad Hrvatske Akad Znan Umjet 458: 103–129 (in Croatian).
  • McCrea JM (1950). On the isotopic chemistry of carbonates and a paleotemperature scale. The J Chem Physic 18: 849–857.
  • O’Neil JR, Clayton RN, Mayeda TK (1969). Oxygen isotope fractionation in divalent metal carbonates .The J Chem Physic 51: 5547–5558.
  • Ohmoto H, Rye R (1979). Isotopes of sulfur and carbon. Geochem Hydrothermal Ore Dep: 509–567.
  • Pandit M, Golani P (2001). Reappraisal of the petrologic status of Newania ‘carbonatite’of Rajasthan, western India. J Asian Eart Sci19: 305–310.
  • Pandit M, Sial A, Sukumaran G, Pimentel M, Ramasamy A, Ferreira V (2002). Depleted and enriched mantle sources for Paleo-and Neoproterozoic carbonatites of southern India: Sr, Nd, C–O isotopic and geochemical constraints. Chem Geol 189: 69–89.
  • Pearce NJG, Leng MJ (1996). The origin of carbonatites and related rocks from the Igaliko Dyke Swarm, Gardar Province, South Greenland: field, geochemical and C-O-Sr-Nd isotope evidence. Lithos 39: 21–40.
  • Peccerillo A, Federico M, Barbieri M, Brilli M, Wu T-W (2010). Interaction between ultrapotassic magmas and carbonate rocks: evidence from geochemical and isotopic (Sr, Nd, O) compositions of granular lithic clasts from the Alban Hills Volcano, Central Italy. Geochim Cosmochim Acta 74: 2999–3022.
  • Pendžerkovski J, Temkova V, Pavlovski B (1973–1978). Novi Podatoci za Starosta na Gorno Krednite Sedimenti vo Oblasta na s. Šopur, s. Damjan, s. Lakavica. Skopje, Macedonia: Nauka (in Macedonian).
  • Pineau F, Javoy M, Allegre CJ (1973). Etude systématique des isotopes de l’oxygène, du carbone et du strontium dans les carbonatites. Geochim Cosmochim Acta 37: 2363–2377 (in Fre
  • Pirc K (2007). Problematika karbonatnega kompleksa na obmocju Krive Lakavice (vzhodna Makedonija). Diplomsko delo = The problem of carbonate complex in the area of Kriva Lakavica (east Macedonia). Graduate thesis, University of Ljubljana, Ljubljana, Slovenia (in Slovenian).
  • Ray JS, Ramesh R, Pande K (1999). Carbon isotopes in Kerguelen plume-derived carbonatites: evidence for recycled inorganic carbon. Eart Planet Sci Lett 170: 205–214.
  • Ray JS, Trivedi JR, Dayal AM (2000). Strontium isotope systematics of Amba Dongar and Sung Valley carbonatite-alkaline complexes, India: evidence for liquid immiscibility, crustal contamination and long-lived Rb/Sr enriched mantle sources. J Asian Eart Sci 18: 585–594.
  • Santos RV, Clayton RN (1995). Variations of oxygen and carbon isotopes in carbonatites: A study of Brazilian alkaline complexes. Geochim Cosmochim Acta 59: 1339–1352.
  • Serafimovski T, Tasev G, Dolenec T (2006). Petrological and geochemical features of the Neogene volcanites of the Osogovo mountains, Eastern Macedonia. RMZ-Mat Geoenviron 52: 523–534.
  • Sharma T, Clayton RN (1965). Measurement of O18O16 ratios of total oxygen of carbonates. Geochim Cosmochim Acta 29: 1347–1353.
  • Sijakova-Ivanova T, Boev B, Mircovski V (2012). Mineralogical investigation of enclaves present in calc-silicate rocks from Novo Selo-Kriva Lakavica, Eastern Macedonia. In: Bulgarian Geological Society Geosciences 2012 Proceedings, pp. 1–2.
  • Srivastava RK, Heaman LM, Sinha AK, Shihua S (2005a). Emplacement age and isotope geochemistry of Sung Valley alkaline– carbonatite complex, Shillong Plateau, northeastern India: implications for primary carbonate melt and genesis of the associated silicate rocks. Lithos 81: 33–54.
  • Srivastava RK, Mohan A, Fonseca Ferreira Filho C (2005b). Hotfluid driven metasomatism of samalpatti carbonatites, South India: evidence from petrology, mineral chemistry, trace elements and stable isotope compositions. Gond Res 8: 77–85.
  • Stojanov R, Svešnikova EV (1985). Granites and Contact-Metamorphic Rocks in Madenska Reka on the Way Štip-Radoviš (SR Makedonija). Geologica Macedonica 1: 165–181.
  • Sutherland D (1967). A note on the occurrence of potassium-rich trachytes in the Kaiserstuhl carbonatite complex, West Germany. Min Mag 36: 334–341.
  • Sweeney RJ (1994). Carbonatite melt compositions in the Earth’s mantle. Earth Planet Sci Lett 128: 259–270.
  • Tack L, Liégeois JP, Deblond A, Duchesne JC (1994). Kibaran A-type granitoids and mafic rocks generated by two mantle sources in a late orogenic setting (Burundi). Precamb Res 68: 323–356.
  • Taylor HP Jr, Frechen J, Degens ET (1967). Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany and the Alnö district, Sweden. Geochim Cosmochim Acta 31: 407–430.
  • Tuttle OF, Gittins J (1966). Carbonatites. New York, NY, USA: Interscience Publishers. Twyman JD, Gittins J (1987) Alkalic carbonatite magmas: parental or derivative? Geological Society, London, Special Publications 30: 85–94.
  • Valley JW (1986). Stable isotope geochemistry of metamorphic rocks. Rev Min Geochem 16: 445–489.
  • Van Groos AK (1975). The effect of high CO 2 pressures on alkalic rocks and its bearing on the formation of alkalic ultrabasic rocks and the associated carbonatites. Am J Sci 275: 163–185.
  • Veizer J, Hoefs J (1976). The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta 40: 1387–1395.
  • Wallace ME, Green DH (1988). An experimental determination of primary carbonatite magma composition. Nature 335: 343– 346.
  • Wenzel T, Baumgartner LP, Brügmann GE, Konnikov EG, Kislov EV (2002). Partial melting and assimilation of dolomitic xenoliths by mafic magma: the Ioko-Dovyren intrusion (North Baikal Region, Russia). J Petrol 43: 2049–2074.
  • Woolley A (1989). The spatial and temporal distribution of carbonatites. In: Bell K, editor. Carbonatites: Genesis and Evolution. London, UK: Unwin Hyman, pp. 15–37.
  • Woolley A, Kempe D (1989). Carbonatites: nomenclature, average chemical compositions, and element distribution. In: Bell K, editor. Carbonatites: Genesis and Evolution. London, UK: Unwin Hyman, 1–14.
  • Woolley AR, Platt RG (1986). The mineralogy of nepheline syenite complexes from the northern part of the Chilwa Province, Malawi. Min Mag 50: 597–610.
  • Wyllie P, Tuttle O (1960). The system CaO–CO2–H2O and the origin of carbonatites. J Petrol 1: 1–46.
  • Xu C, Kynicky J, Chakhmouradian AR, Campbell IH, Allen CM (2010). Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China. Lithos 118: 145–155.