Surface heat flow in Western Anatolia (Turkey) and implications to the thermal structure of the Gediz Graben

Surface heat flow in Western Anatolia (Turkey) and implications to the thermal structure of the Gediz Graben

Knowledge of heat flow density on the Earth’s surface and subsurface temperature distribution is essential for the interpretation of several processes in the crust such as for the evaluation of the geothermal potential of a region. With this study, we investigate the conductive heat flow distribution in western Anatolia to understand the thermal state and its relationship to regional tectonics in the region. The new heat flow data are collected and combined with previously published data to obtain the new heat flow map of western Anatolia. Analysis of data sets after appropriate corrections yields a better picture of the regional distribution of heat flow within the region. Generally, high values are observed around the grabens of Menderes Massif due to the intense tectonic activity. We also present the 2D steady-state thermal model of Gediz. The modeled temperatures are validated by temperature measurements from two deep wells. Numerical simulation results show that the dominant heat transfer mechanism in Gediz graben can be explained by conduction. Temperature distribution in the deep subsurface of the graben is controlled by both thickness distribution and thermal properties of the different stratigraphic sections. Thermal conductivity contrast between different stratigraphic sections causes anomalously elevated heat flow values at the edges of the graben. The comprehensive results of this study will bring a new perspective to geothermal studies in particular Enhanced Geothermal Systems (EGS) resource estimations in Gediz graben.

___

  • Baba A (2012). Present energy status and geothermal utilization in Turkey. In: 39th International Associatıon of Hydrogeologists; Canada. pp. 16-21.
  • Balkan E, Erkan K, Şalk M (2017). Thermal conductivity of major rock types in western and central Anatolia regions, Turkey. Journal of Geophysics and Engineering 14 (4): 909- 919. doi: 10.1088/1742-2140/aa5831
  • Beardsmore GR (2004). The influence of basement on surface heat flow in the Cooper Basin. Exploration Geophysics 35 (4): 223– 35. doi: 10.1071/EG04223
  • Beardsmore GR, Cull JP (2001). Crustal heat flow: a guide to measurement and modelling. Cambridge University Press.
  • Bellani S, Gherardi F (2019). Thermal conductivity characterization of Larderello and Mt. Amiata geothermal fields, Italy. GRC Transactions 43: 541-549.
  • Bilim F, Akay T, Aydemir A, Kosaroglu S (2016). Curie point depth, heat-flow and radiogenic heat production deduced from the spectral analysis of the aeromagnetic data for geothermal investigation on the Menderes Massif and the Aegean Region, western Turkey. Geothermics 60: 44–57. doi: 10.1016/j. geothermics.2015.12.002
  • Blackwell DD (1983). Heat flow in the northern Basin and Range province. Geothermal Resources Council Special Report 13: 81-92.
  • Bozkurt E (2001). Neotectonics of Turkey—a synthesis. Geodinamica Acta 14: 3–30. doi: 10.1080/09853111.2001.11432432
  • Burçak M (2012). Kizgin Kuru Kaya (HDR: Hot Dry Rock) Ve Geliştirilebilir Jeotermal Sistemler (EGS: Enhanced Geothermal Systems). Maden Tetkik ve Arama Genel Müdürlüğü, Enerji Hammadde Etüt ve Arama Dairesi. Ankara (in Turkish).
  • Burçak M (2015). Hot dry rock (HDR) and enhanced geothermal system (EGS) and favourable regions for innovation in Turkey. MTA 80. Yıl Sempozyumu, Ankara (in Turkish).
  • Cermak V, Rybach L (1979). Terrestrial heat flow in Europe. Berlin: Springer Verlag.
  • Chapra SC, Canale RP (2011). Numerical methods for engineers (Vol. 2). New York: Mcgraw-hill.
  • Çağlar KÖ (1961). Türkiye maden suları ve kaplıcaları. Seri B (no:11). Ankara, Maden Tetkik ve Arama Enstitüsü Yayınları (in Turkish).
  • Çanakci H, Demirboğa R, Karakoç MB, Şirin O (2007). Thermal conductivity of limestone from Gaziantep (Turkey). Building and Environment 42 (44): 1777-1782. doi: 10.1016/j. buildenv.2006.01.011
  • Çiftçi N B, Bozkurt E (2009a). Evolution of the Miocene sedimentary fill of the Gediz Graben, SW Turkey. Sedimentary Geology 216 (3): 49-79. doi: 10.1016/j.sedgeo.2009.01.004
  • Çiftçi NB, Bozkurt E (2009b). Pattern of normal faulting in the Gediz Graben, SW Turkey. Tectonophysics 473 (1): 234-260.
  • Çiftçi NB, Bozkurt E (2010). Structural evolution of the Gediz Graben, SW Turkey: temporal and spatial variation of the graben basin. Basin Research 22 (6): 846-873.
  • Çiftçi NB, Temel RO, İztan YH (2010). Hydrocarbon occurrences in the western Anatolian (Aegean) grabens, Turkey: Is there a working petroleum system?. American Association of Petroleum Geologists Bulletin 94 (12): 1827-1857. doi: 10.1306/06301009172
  • Demirboğa R (2003). Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energy and Buildings 35 (2): 189-192. doi: 10.1016/S0378- 7788(02)00052-X
  • Demirel Z, Sentürk N (1996). Geology and hydrogeology of deep thermal aquifers in Turkey. In: Proceeding of the Regional Seminar on Integration of Information Between Oil Drilling and Hydrogeology of Deep Aquifers. Amman, Jordan. pp. 38.
  • Dewey JF, Şengör AMC (1979). Aegean and surrounding regions: complex multiple and continuum tectonics in a convergent zone. Geological Society of America Bulletin 90 (1): 84–92.
  • Dolmaz MN, Ustaömer T, Hisarli ZM, Orbay N (2005) Curie point depth variations to infer thermal structure of the crust at the African-Eurasian convergence zone, SW Turkey. Earth Planets and Space 57 (5): 373–38.
  • Emre T (1996). Geology and tectonics of the Gediz graben. Turkish Journal of Earth Science 5 (3): 171–185.
  • Erkan K (2015). Geothermal investigations in western Anatolia using equilibrium temperatures from shallow boreholes. Solid Earth 6 (1): 103-113. doi: 10.5194/se-6-103-2015
  • Grubbe K, Haenel R, Zoth G (1983). Determination of the vertical component of thermal conductivity by line source methods. Zentralbl Geol. Palaontol. 1: 49–56.
  • Gülmez F, Damcı E, Ülgen UB, Okay A (2019). Deep Structure of Central Menderes Massif: data from deep geothermal wells. Turkish Journal of Earth Sciences 28: 531-543.
  • Gürer A, Pinçe A, Gürer Ö F, İlkışık O M (2002). Resistivity distribution in the Gediz Graben and its implications for crustal structure. Turkish Journal of Earth Sciences 11 (1): 15-25.
  • Hakyemez HY, Erkal T, Göktas F (1999). Late Quaternary evolution of the Gediz and Büyük menderes grabens, western Anatolia, Turkey. Quaternary Science Reviews 18 (4-5): 549-554. doi: 10.1016/S0277-3791(98)00096-1
  • Healy JJ, de Groot JJ, Kestin J (1976). The theory of the transient hotwire method for measuring thermal conductivity. Physica B+C 82 (2): 392-408. doi: 10.1016/0378-4363(76)90203-5.
  • Hıdıroğlu İA, Parlaktuna M (2019). Dünyada Kızgın Kuru Kaya (HDR) Projeleri ve Türkiye’nin Muhtemel HDR Alanları. Jeotermal Elektrik Santral Yatırımcıları Derneği, 6-7 Şubat GT2019 Türkiye Jeotermal Kongresi Bildiriler Kitabı Ankara. Turkey. pp. 91-103.
  • Işık V, Tekeli O (2001). Late orogenic crustal extension in the northern Menderes Massif (Western Turkey); evidence for metamorphic core complex formation. International Journal of Earth Science 89: 757-765.
  • İlkışık OM, Yalçın MN, Sari C, Okay N, Bayrak M et al. (1996a). Ege bölgesi’nde ısı akısı araştırmaları, TÜBİTAK Proje No: YDABÇAG-233/G, Ankara (in Turkish).
  • İlkışık OM., Sarı C, Bayrak M, Öztürk S, Sener Ç et al. (1996b). Ege bölgesinde jeotermik araştırmalar, TÜBİTAK, Proje No: YDABÇAG-430/G, Ankara (in Turkish).
  • Jaeger JC (1965). Application of the theory of heat conduction to geothermal measurements. In: Lee WHK (editor).Terrestrial Heat Flow. Washington:American Geophysical Union. pp. 7-23.
  • Jaupart C, Labrosse S (2007). Temperatures, heat and energy in the mantle of the earth. Treatise on Geophysics 7: 223-270.
  • Karakuş H (2013). Geothermal energy in active extensional basins: An example from Western Anatolia, Turkey. In: (Jianwen Yang) Geothermal Energy, Technology and Geology. Newyork; Nova, pp. 115-150.
  • Karakuş H, Şimşek Ş (2012). Spatial variations of carbon and Helium isotope rations in geothermal fluids of Buyuk Menderes Graben. In: 5th Geochemistry Symposium. pp. 23-25.
  • Kukkonen IT, Jõeleht A (1996). Geothermal modelling of the lithosphere in the central Baltic Shield and its southern slope. Tectonophysics 255 (1): 25-45.
  • Lee WH, Uyeda S (editors) (1965). Review of heat flow data: Terrestrial heat flow. Washington, American Geophysical Union.
  • Lees CH (1910). On the shapes of the isogeotherms under mountain ranges in radio-active districts. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 83 (563): 339-346.
  • Le Pichon X, Chamot-Rooke N, Lallemant S, Noomen R, Veis G (1995). Geodetic determination of the kinematics of central Greece with respect to Europe: Implications for eastern Mediterranean tectonics. Journal of Geophysical Research: Solid Earth 100(B7): 12675-12690. doi: 10.1029/95JB00317
  • Lowrie W (2007). Fundamentals of geophysics (2nd ed.). Newyork: Cambridge University Press.
  • Özyalın Ş, Pamukçu O, Gönenç T, Yurdakul A, Sözbilir H (2012). Application of boundary analysis and modeling methods on Bouguer gravity data of the Gediz Graben and surrounding area in Western Anatolia and its tectonic implications. Journal of the Balkan Geophysical Society 15 (2): 19-30.
  • Paton S (1992). Active normal faulting, drainage patterns and sedimentation in southwestern Turkey. Journal of the Geological Society 149 (6): 1031-1044. doi: 10.1144/ gsjgs.149.6.1031
  • Pollack HN, Chapman D S (1977). On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38 (3-4): 279-296. doi: 10.1016/0040-1951(77)90215-3
  • Pfister M, Ryback L, Şimşek Ş (1998). Geothermal reconnaissance of the Marmara Sea region (NW Turkey): surface heat flow density in an area of active continental extension. Tectonophysics 291 (1-4): 77–89. doi: 10.1016/S0040-1951(98)00032-8
  • Roche V, Sternai P, Guillou-Frottier L, Menant A, Jolivet L et al. (2018) Emplacement of metamorphic core complexes and associated geothermal systems controlled by slab dynamics. Earth and Planetary Scince Letters 498 (15): 322–33. doi: 10.1016/j.epsl.2018.06.043
  • Roche V, Bouchot V, Beccaletto L, Jolivet L, Guillou-Frottier L et al. (2019). Structural, lithological, and geodynamic controls on geothermal activity in the Menderes geothermal Province (Western Anatolia, Turkey). International Journal of Earth Sciences 108 (1): 301–328. doi: 10.1007/s00531-018-1655-1
  • Sarı C, Şalk M (2006). Sediment thicknesses of the western Anatolia graben structures determined by 2D and 3D analysis using gravity data. Journal of Asian Earth Sciences 26 (1): 39-48. doi: 10.1016/j.jseaes.2004.09.011
  • Sass JH, Lachenbruch AH, Moses TH, Morgan P (1992). Heat flow from a scientific research well at Cajon Pass, California. Journal of Geophysical Research: Solid Earth, 97 (B4): 5017-5030. doi: 10.1029/91JB01504
  • Sözbilir H (2002). Geometry and origin of folding in the Neogene sediments of the Gediz Graben, western Anatolia, Turkey. Geodinamica Acta 15: 277–288. doi: 10.1080/09853111.2002.10510761
  • Şahin S (2014). Gediz grabeni Alaşehir bölgesinin jeotermal potansiyelinin jeofizik yöntemlerle araştırılması. MSc Thesis, Çanakkale Onsekiz Mart University, Çanakkale, Turkey (in Turkish).
  • Şengör AMC, Görür N, Şaroçlu F (1985). Strike-slip faulting and related basin formations in zones of tectonic escape: Turkey as a Case Study. In: Biddle KT, Christie-Blick N (editors) Strike-slip Faulting and Basin Formation. Soc. Econ. Paleontol. Mineral. Special Publication, pp. 227–264
  • Şensoy S, Demircan M, Ulupınar U, Balta İ (2008). Türkiye iklim atlası. Turkish State Meteorological Service (DMİ), Ankara. (in Turhish).
  • Tezcan AK, Turgay MI (1991). Heat flow and temperature distribution in Turkey. Geothermal atlas of Europe. Gotha: Herman Haack Verlag.
  • Thakur M, Blackwell DD, Erkan K (2012). The Regional thermal regime in Dixie Valley, Nevada, USA. Geothermal Resources Council Transactions 36: 59-67.
  • Thienprasert A, Raksaskulwong M (1984). Heat flow in northern Thailand. Tectonophysics 103 (1-4): 217-233. doi: 10.1016/0040-1951(84)90085-4
  • Yılmaz Y, Genç ŞC, Gürer F, Bozcu M, Yılmaz K et al. (2000). When did the Western Anatolian grabens begin to develop? In: Bozkurt E, Winchester, JA, Piper JAD (editors). Tectonics and Magmatism in Turkey and the Surrounding Area. Journal of Geological Society of London special Publication. pp. 131–162.
Turkish Journal of Earth Sciences-Cover
  • ISSN: 1300-0985
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Lithium extraction from geothermal waters; a case study of Ömer-Gecek (Afyonkarahisar) geothermal area

Muhammed Fatih CAN, Can BAŞARAN, Ahmet YILDIZ, Müfit DEMİRKAPI

Simulation and parametric study on a novel modified Kalina cycle

Jun ZHOU, Jie PENG, Jiaqi ZHANG, Guobin LEI, Shengchao SHI, Fuzhi QI, Jiawei XU, Dongxi LIU, Qingyao MENG

Use of geothermal fluid for agricultural irrigation: preliminary studies in BalçovaNarlıdere Geothermal Field (Turkey

Alper BABA, Mehmet Kamil MERİÇ, Yasemin Senem KUKUL, Emrah ÖZÇAKAL, Yakubu Abdullahi JARMA, Nalan KABAY, Neriman Tuba BARLAS, Hakan ÇAKICI

Structural controls and hydrogeochemical properties of geothermal fields in the Varto region, East Anatolia

Hasan SÖZBİLİR, Alper BABA, İskender DÖLEK, Taygun UZELLİ, Mehmet Furkan ŞENER, Ramazan Kadir DİRİK

High heat generating granites of Kestanbol: future enhanced geothermal system (EGS) province in western Anatolia

Dornadula CHANDRASEKHARAM, Alper BABA

Harcourt granite scCO2 water interaction: a laboratory study of reactivity and modelling of hydrogeochemical processes

Ranjith Pathegama GAMAGE, Badulla Liyanage AVANTHI ISAKA

Hydrogeochemical and isotopic monitoring of the Kestanbol geothermal field (Northwestern Turkey) and its relationship with seismic activity

Deniz ŞANLIYÜKSEL YÜCEL, Harika MARMARA, Süha ÖZDEN

Exploration of geothermal potential using integrated fuzzy logic and analytic hierarchy process (AHP) in Ağrı, Eastern Turkey

Erhan ŞENER, Şehnaz ŞENER

Numerical modeling of fluid flow and heat transfer in Kurşunlu geothermal field-KGF (Salihli, Manisa / Turkey)

Toygar AKAR, Ünsal GEMİCİ, Melis SOMAY-ALTAŞ, Gültekin TARCAN

Surface heat flow in Western Anatolia (Turkey) and implications to the thermal structure of the Gediz Graben

Bülent Oktay AKKOYUNLU, Mete TAYANÇ, Elif BALKAN-PAZVANTOĞLU, Kamil ERKAN, Müjgan ŞALK