Sulfur isotope characteristics of the Permian VHMS deposits in Tasik Chini district, Central Belt of Peninsular Malaysia

Sulfur isotope characteristics of the Permian VHMS deposits in Tasik Chini district, Central Belt of Peninsular Malaysia

Sulfur isotope data from sulfide and sulfate minerals have been measured from the two typical examples of the Permianvolcanic-hosted massive sulfide (VHMS) deposits at the Tasik Chini district in the Central Belt of Peninsular Malaysia. In this study,we present the sulfur isotope data for 33 sulfide minerals and 23 barite samples from two VHMS deposits in the Tasik Chini district.Sulfides show a narrow range of sulfur values from 2.9 to +8.30 , which can be interpreted to be derived from a mixed sulfur sourceof reduced seawater sulfate with the possible addition of magmatic sulfur. Sulfate sulfur in barites yields a δ 34 S range between 11 and22 , which is comparable to that of Permian seawater sulfate. Sulfur isotope results obtained for the VHMS deposits in the Tasik Chinidistrict suggest that the source of ore fluids during the formation of the Tasik Chini VHMS deposit is a seawater-dominated fluid withprobably minor magmatic fluid input. This is similar to VHMS associated with ancient and modern submarine hydrothermal systems.

___

  • Arnold M, Sheppard SMF (1981). East Pacific Rise at latitude 21°N: isotopic composition and origin of the hydrothermal sulfur. Earth Planet Sc Lett 56: 148-156.
  • Bluth GJ, Ohmoto H (1988). Sulfide-sulfate chimneys on the East Pacific Rise, 11’ and 13’ N latitudes, Part II: sulfur isotopes. Can Mineral 26: 505-516.
  • Böhlke JK, Shanks WC III (1994) Stable isotope study of hydrothermal vents at Escanaba Trough: observed and calculated effects of sediment-seawater interaction. In: Morton JL, Zierenberg RA, Reiss CA, editors. Geologic, hydrothermal and biologic studies at Escanaba Trough, Gorda Ridge, Offshore northern California. US Geol Surv Bull 2022, pp. 223-239.
  • Cagatay MN, Eastoe CJ (1995). A sulfur isotope study of volcanogenic massive sulfide deposits of the Eastern Black Sea province, Tu r k e y. Miner Deposita 30: 55-66.
  • Cazañas X, Alfonso P, Melgarejo JC, Proenza JA, Fallick AE, (2003) . Source of ore-forming fluids in El Cobre VHMS deposit (Cuba): evidence from fluid inclusions and sulfur isotopes. J Geochem Explor 78-79: 85-90.
  • Chiba H, Uchiyama N, Teagle DAH (1998). Stable isotope study of anhydrite and sulfide minerals at the TAG hydrothermal mound, Mid-Atlantic Ridge 26°N. In: Herzig PM, Humphris SE, Miller J, editors. Proc ODP 158, Sci Results. College Station, TX, USA, pp. 85-90.
  • Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980). The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28: 199-260.
  • Cross MM, Bottrell SH (2000). Reconciling experimentally observed sulfur isotope fractionation during thermochemical sulfate reduction (TSR) with field data: A ‘steady-state’ model of isotopic behaviour. Goldschmidt, J Conf Abstr 5: 325.
  • de Ronde CEJ, Hannington MD, Stoffers P, Wright IC, Ditchburn RG, Reyes AG, Baker ET, Massoth GJ, Lupton JE, Walker SL et al. (2005). Evolution of a submarine magmatic-hydrothermal system: Brothers Volcano, Southern Kermadec Arc, New Zealand. Econ Geol 100: 1097-1133.
  • Downes PM, Seccombe PK (2004). Sulfur isotope distribution in Late Silurian volcanic-hosted massive sulfide deposits of the Hill End Trough, eastern Lachlan Fold Belt, New South Wales. Aust J Earth Sci 51: 123-139.
  • Doyle MG, Allen RL (2003). Sub-sea floor replacement in volcanic- hosted massive sulfide deposits. Ore Geol Rev 23: 183-222.
  • Duckworth RC, Fallick AE, Rickard D (1994). Mineralogy and sulfur isotopic composition of the Middle Valley massive sulfide deposit, northern Juan de Fuca Ridge. In: Mottl MJ, Davis EE, Fisher AT, Slacks JF, editors. Proc ODP 139: Sci Results. College Station, TX, USA, pp. 373-385.
  • Duckworth RC, Knott R, Fallick AE, Rickard D, Murton BJ, van Dover C (1995). Mineralogy and sulfur isotope geochemistry of the Broken Spur sulfides, 29°N, Mid-Atlantic Ridge. In: Parson LM, Walker CL, Dixon DR, editors. Hydrothermal vents and processes. Geol Soc Spec Pub 87, pp. 175-189.
  • Duhig NC, Stolz J, Davidson GJ, Large RR (1992). Cambrian microbial and silica gel textures preserved in silica iron exhalites from the Mount Windsor volcanic belt, Australia: their petrography, chemistry, and origin. Econ Geol 87: 764-784.
  • Eastoe CJ, Gustin MM (19960. Volcanogenic massive sulfide deposits and anoxia in the Phanerozoic oceans. Ore Geol Rev 10: 179- 197.
  • Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005). Volcanogenic massive sulfide deposit . Econ Geol 100: 523-560.
  • Fifarek RH (1985). Alteration geochemistry, fluid Inclusion, and stable isotope study of the Red Ledge volcanogenic massive sulfide deposit, Idaho. PhD, Oregon State University, Texas, USA.
  • Galley AR, van Breeman O, Franklin JM (2000). The relationship between intrusion-hosted Cu-Mo mineralization and the VMS deposits of the Archean Sturgeon Lake mining camp, northwestern Ontario. Econ Geol 95: 1543-1550.
  • Galley AG, Hannington M, Jonasson I ( 2007). Volcanogenic massive sulfide deposits. In: Goodfellow WD, editor. Mineral deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geol Assoc Can, Miner Deposits Division 5, pp. 141-161.
  • Gemmell JB, Large RR (1992). Stringer system and alteration zones underlying the Hellyer volcanogenic massive sulfide deposit, Tasmania, Australia. Econ Geol 87: 620-649.
  • Gemmell JB, Sharpe R (1998). Detailed sulfur-isotope investigation of the TAG hydrothermal mound and stockwork zone, 26 degrees north, Mid-Atlantic Ridge. In: Herzig PM, Humphris SE, Miller J, editors. Proc ODP 158: Sci Result. College Station, TX, USA, pp. 71-84.
  • Goodfellow WD, Blaise B (1988). Sulfide formation and hydrothermal alteration of hemipelagic sediment in Middle Valley, northern Juan de Fuca Ridge. Can Mineral 26: 675-696.
  • Halbach P, Nakamura K, Wahsner M, Lange J, Sakai H, Käselitz L, Hansen RD, Yamano M, Post J, Prause B et al. (1989). Probable modern analogue of Kuroko-type massive sulfide deposits in the Okinawa Trough back-arc basin. Nature 338: 496-499.
  • Hannington MD, Bleeker W, Kjarsgaard I (1999a). Sulfide mineralogy, geochemistry, and genesis of the Kidd Creek deposit: Part I. North, Central, and South orebodies. Econ Geol Monogr 10: 163-224.
  • Hannington MD, Bleeker W, Kjarsgaard I (1999b). Sulfide mineralogy, geochemistry, and genesis of the Kidd Creek deposit: Part II. The Bornite Zone. Econ Geol Monogr 10: 225-266.
  • Hannington MD, Scott SD (1988). Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulphate spire in the caldera of Axial Seamount, Juan de Fuca Ridge. Can Mineral 26: 603-626.
  • Hekinian R, Fevrier M, Bischoff JL, Picot P, Shanks WC III (1980). Sulfide deposits from the East Pacific Rise near 21°N. Science 207: 1433- 1444.
  • Herzig PM, Petersen S, Hannington MD (1998). Geochemistry and sulfur-isotopic composition of the TAG hydrothermal mound, mid-Atlantic Ridge, 26’N. In: Herzig PM, Humphris SE, Miller J, editors. Proc ODP 158: Sci Result. College Station, TX, USA, pp. 47-70.
  • Hoefs J (1997). Stable Isotope Geochemistry. 4th edition. Berlin, Germany: Springer Verlag.
  • Hoefs J (2004). Stable Isotope Geochemistry. 5th edition. Berlin, Germany: Springer-Verlag.
  • Hunns SR (2001) . Style and setting of volcanic-hosted massive sulfide mineralization in the Early Permian Berserker beds, Mount Chalmers, Queensland. PhD, University of Tasmania, Australia.
  • Huston DL (1999). Stable isotopes and their significance for understanding the genesis of volcanic-hosted massive sulfide deposits - A review. In: Barrie CT, Hannington MD, editors. Volcanic-associated massive sulfide deposits-Processes and examples in modern and ancient settings. Rev Econ Geol 8, pp. 157-179.
  • Huston DL, Pehrson S, Eglington BM, Khin Zaw (2010). The geology and metallogeny of volcanic-hosted massive sulfide deposits: variations through geologic time and with tectonic setting. Econ Geol 105: 571-591.
  • Huston DL, Power M, Gemmell JB, Large RR (1995). Design, calibration and geological application of the first operational Australian laser ablation sulfur isotope microprobe. Aust J Earth Sci 42: 549-555.
  • Huston DL, Relvas JMRS, Gemmell JB, Drieberg S ( 2011). The role of granites in volcanic-hosted massive sulfide ore-forming systems: an assessment of magmatic-hydrothermal contributions. Miner Deposita 46: 473-507.
  • Hutchinson RW (1986). Massive sulfide deposits and their possible significant to other ores in Southeast Asia. Geol Soc Malaysia Bull 19: 1-22.
  • Inverno CMC, Solomon M, Barton MD, Foden J (2008). The Cu stockwork and massive sulfide ore of the Feitais Volcanic- Hosted Massive Sulfide deposit, Aljustrel, Iberian Pyrite Belt, Portugal: a mineralogical, fluid inclusion, and isotopic investigation. Econ Geol 103: 241-267.
  • Janecky DR, Shanks WC III (1988). Computational modelling of chemical and sulfur isotopic reaction processes in seafloor hydrothermal systems: chimneys, massive sulfides and subjacent alteration zones. Can Mineral 26: 805-825.
  • Kalogeropoulus SI, Scott SD (1983). Mineralogy and geochemistry of tuffaceous exhalites (tetsusekiei) of the Fukazawa mine, Hokuroko district, Japan. Econ Geol Monogr 5: 412-432.
  • Kajiwara Y, Date J (1971). Sulfur isotope study of Kuroko type and Kieslager-type strata-bound massive sulfide deposits in Japan. Geochem J 5: 133-150.
  • Kampschulte A, Strauss H ( 2004). The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem Geol 204: 255-286.
  • Kase K, Yamamoto M, Shibata T (1990). Copper-rich sulfide deposits near 23°N, Mid-Atlantic Ridge: chemical composition, mineral chemistry, and sulfur isotopes. In: Detrick R, Honnorez J, Bryan WB, Juteau T, editors. Proc ODP 106/109: Sci Results. College Station, TX, USA, pp. 163-172.
  • Kerridge JF, Haymon RM, Kastner M (1983). Sulfur isotope systematics at the 21°N site, East Pacific Rise. Earth Planet Sci Lett 66: 91-100.
  • Knott R, Fallick AE, Rickard D, Bäcker H (1995). Mineralogy and sulfur isotope characteristics of a massive sulfide boulder, Galapagos Rift, 85°55’W. In Parson LM, Walker CL, Dixon DR, editors. Hydrothermal vents and processes: Geol Soc Spec Pub 87, pp. 207-222.
  • Koski RA, Shanks WC III, Bohrson WA, Oscarson RL (1988). The composition of massive sulfide deposits from the sediment- covered floor of Escanaba Trough, Gorda Ridge: implications for depositional processes. Can Mineral 26: 655-673.
  • Kusakabe M, Mayeda S, Nakamura E (1990). S, O and Sr isotope systematics of active vent materials from the Mariana backarc basin spreading axis at 18°N. Earth Planet Sci Lett 100: 275-282.
  • Large RR (1992). Australian volcanic-hosted massive sulfide deposits: features, styles, and genetic models. Econ Geol 87: 471-510.
  • Lein AY, Ulyanova NV, Grinenko VA, Yev B, Lisitsyn AP (1993). Mineralogical and geochemical features of the Manus Basin hydrothermal sulfide ores, Bismarck Sea. Geochem Int 30: 57-71.
  • Lüders V, Pracejus B, Halbach P ( 2001). Fluid inclusion and sulfur isotope studies in probable modern analogue Kuroko-type ores from the JADE hydrothermal field (Central Okinawa Trough, Japan). Chem Geol 173: 45-58.
  • Marchig V, Puchelt H, Rösch H, Blum N ( 1990). Massive sulfides from ultra-fast spreading ridge, East Pacific Rise at 18-21°S: a geochemical stock report. Mar Mining 9: 459-493.
  • McConachy TF (1988). Hydrothermal plumes and related deposits over spreading ridges in the northeast Pacific Ocean: the East Pacific Rise near 11°N and 21°N, Explorer Ridge, and the J.Tuzo Wilson Seamounts. PhD, University of Toronto, Canada.
  • Minerals and Geoscience Department of Malaysia (2004). Geological map of Peninsular Malaysia 8th Ed. (1:750000). Published by Directorate of Mineral and Geoscience Department of Malaysia: Kuala Lumpur.
  • Mohd Basril Iswadi B (2014). Geology and genesis of volcanic-hosted massive sulfide deposits in the Tasik Chini District, Central Peninsular Malaysia. PhD, University of Tasmania, Australia.
  • Mohd Basril Iswadi B, Zaw K, Meffre S, Large RR (2016). Geochemistry, geochronology, and tectonic setting of early Permian (~290 Ma) volcanic-hosted massive sulphide deposits of the Tasik Chini district, Peninsular Malaysia. Int Geol Rev 58: 929-948.
  • Mottl MJ, Holland HD, Corr RF (1979). Chemical exchange during hydrothermal alteration of basalt by seawater-II. Experimental results for Fe, Mn and sulfur species. Geochim Cosmochim Ac 43: 869-884.
  • Ohmoto H (1972). Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ Geol 67: 551-578.
  • Ohmoto H (1986). Stable isotope geochemistry of ore deposits. Rev Mineral 16: 491-559.
  • Ohmoto H (1996). Formation of volcanogenic massive sulfide deposits: the Kuroko perspective. Ore Geol Rev 10: 135-177.
  • Ohmoto H, Goldhaber MB (1997). Sulfur and Carbon Isotopes. New York, NY, USA: John Wiley and Sons.
  • Ohmoto H, Rye O (1979). Isotopes of sulfur and carbon. In: Barnes HL, editor. Geochemistry of Hydrothermal Ore Deposits. 2nd ed. New York, NY, USA: Wiley.
  • Ohmoto H, Skinner BJ (1983). The Kuroko and related volcanogenic massive sulfide deposits: Introduction and summary of new findings. In: Ohmoto H, Skinner BJ, editors. The Kuroko and related volcanogenic massive sulfide deposits. Econ Geol Monogr 5, pp. 1-8.
  • Peter JM, Shanks WC III (1992). Sulfur, carbon, and oxygen isotope variations in submarine hydrothermal deposits of Guaymas Basin, Gulf of California, USA. Geochim Cosmochim Ac 56: 2025-2040.
  • Rees CE, Jenkins WJ, Monster J (1978). The sulphur isotope geochemistry of ocean water sulphate. Geochim Cosmochim Ac 42: 377-382
  • Ripley EM, Ohmoto H (1977) Mineralogic, sulfur isotope and fluid inclusion studies of the stratabound copper deposits of the Raul mine, Peru. Econ Geol 72: 1017-1041.
  • Robinson BW, Kusakabe M (1975). Quantitative preparation of sulfur dioxide, for 34S/32S analyses, from sulfides by combustion with cuprous oxide. Anal Chem 47: 1179-1181.
  • Rouxel O, Fouquet Y, Ludden JN (2004). Subsurface processes at the Lucky Strike hydrothermal field, Mid-Atlantic Ridge—evidence from sulfur, selenium, and iron isotope. Geochim Cosmochim Ac 68: 2295-2311.
  • Sangmeshwar SRR (1972). Trace element and sulfur isotope geochemistry of sulfide deposits from the Flin Flon and Snow Lake areas of Saskatchewan and Manitoba. PhD, University of Saskatchewan, Canada.
  • Sangster DF (1968). Relative sulfur isotope abundances of ancient seas and strata-bound sulfide deposits. Proc Geol Ass Can 19: 79-91.
  • Sangster DF (1976). Sulfur and lead isotopes in strata-bound deposits. In: Wolf KH, editor. Handbook of strata-bound and stratiform ore deposits 2. Amsterdam: Elsevier.
  • Sasaki A, Kajiwara Y (1971). Evidence of isotopic exchange between seawater sulfate and some syngenetic sulfide ores. Soc Mining Geol Japan 3: 289-294.
  • Scotney PM, Roberts S, Herrington RJ, Boyce AJ, Burgess R (2005). The development of volcanic hosted massive sulfide and barite-gold orebodies on Wetar Island, Indonesia. Miner Deposita 40: 76-99.
  • Shanks WC III (2001). Stable isotopes in seafloor hydrothermal systems-Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. In: Valley JW, Cole DR, editors. Stable isotope geochemistry. Rev Mineral Geochem 43, pp. 469-525.
  • Shanks WC III, Bischoff JL, Rosenbaun RJ (1981). Seawater sulfate reduction and sulfur isotope fractionation in basaltic systems: interaction of seawater with fayalite and magnetite at 200–350°C. Geochim Cosmochim Ac 45: 1977-1996.
  • Shanks WC III, Böhlke JK, Seal RRII (1995). Stable isotopes in midocean ridge hydrothermal systems: interactions between fluids, minerals, and organisms. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE, editors. Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions. Geophys Monogr 91, pp. 194-221.
  • Shanks WC III, Seyfried WE Jr (1987). Stable isotope studies of vent fluids and chimney minerals, southern Juan de Fuca Ridge: sodium metasomatism and sea-water sulfate reduction. Geophys Res 92: 11387-11399.
  • Sillitoe RH, Hannigton MD, Thompson JFH (1996). High sulfidation deposits in the volcanogenic massive sulfide environment. Econ Geol 91: 204-212.
  • Skirrow R, Coleman ML (1982). Origin of sulfur and geothermometry of hydrothermal sulfides from the Galapagos Rift, 86°N. Nature 299: 142-144.
  • Solomon M, Eastoe CJ, Walshe JL, Green GR (1988). Mineral deposits and sulfur isotope abundances in the Mount Read volcanics between Que River and Mount Darwin, Tasmania. Econ Geol 83: 1307-1328.
  • Solomon M, Gemmell JB, Khin Zaw (2004). Nature and origin of the fluids responsible for forming the Hellyer Zn-Pb-Cu volcanic- hosted massive sulfide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes. Ore Geol Rev 25: 89-124.
  • Stanton RL (1990). Magmatic evolution and the ore type-lava type affiliations of volcanic exhalative ores. Aust IMM M 14: 101- 107.
  • Stuart FM, Duckworth R, Turner G, Schofield PF (1994). Helium and sulfur isotopes of sulfide minerals from Middle Valley, northern Juan de Fuca Ridge. In: Mottl MJ, Davis EE, Fisher AT, editors. Proc ODP 139, Sci Results. College Station, TX, USA, pp. 387- 392.
  • Stuart FM, Harrop PJ, Knott R, Fallick, AE, Turner G, Fouquet Y, Rickard D (1995). Noble gas isotopes in 25,000 years of hydrothermal fluids from 13°N on the East Pacific Rise. In: Parson LM, Walker CL, Dixon DR, editors. Hydrothermal vents and processes: Geol Soc Spec Pub 87, pp. 133-143.
  • Styrt MM, Brackmann AJ, Holland HD, Clark BC, Pisutha-Arnond V, Eldridge CS, Ohmoto H (1981). The mineralogy and the isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the East Pacific Rise, 21°N latitude: Earth Planet Sci Lett 53: 382-390.
  • Ulrich T, Golding SD, Kamber BS, Khin Zaw, Taube A (2002). Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt. Morgan Au-Cu deposit, Australia. Ore Geol Rev 22: 61-90.
  • Velasco F, Sanchez-Espana J, Boyce AJ, Fallick AE, Saez R, Almodovar GR (1998). A new sulfur isotopic study of some Iberian pyrite belt deposits: evidence of a textural control on sulfur isotope composition. Miner Deposita 34: 4-18.
  • Woodruff LG, Shanks WC III (1988). Sulfur-isotope study of chimney minerals and hydrothermal fluids from 21°N East Pacific Rise: Hydrothermal sulfur sources and sisequilibrium sulfate reduction. Geophys Res 93: 4562-4572.
  • Yamamoto M, Ogushi N, Sakai H (1968). Distribution of sulfur isotopes, selenium and cobalt in the Yanahara ore deposits, Okayama-Ken, Japan. Geochem J 2: 137-156.
  • Yanagisawa F, Sakai H (1983). Thermal decomposition of barium sulfate-vanadium pentoxide-silica glass mixtures for the preparation of sulfur dioxide in sulfur isotope ratio measurements. Anal Chem 55: 985-987.
  • Zierenberg RA (1994). Data report: sulfur content of sediments and sulfur isotope concentrations of sulfide and sulfate minerals from Middle Valley. In: Mottl MJ, Davis EE, Fisher AT, Slacks J F, editors. Proc ODP 139, Sci Results. College Station, TX, USA, pp. 739-748.
  • Zierenberg RA, Koski RA, Morton JL, Bouse RM, Shanks WC III (1993). Genesis of massive sulfide deposits on a sediment- covered spreading center, Escanaba Trough, southern Gorda Ridge. Econ Geol 88: 2069-2098.
  • Zierenberg RA, Shanks WC III, Bischoff JL (1984). Massive sulfide deposits at 21°N, East Pacific Rise: chemical composition, stable isotopes, and phase equilibria. Geol Soc America Bull 95: 922- 929.