Petrogenesis of Plio-Quaternary basanites in the Gandom Beryan area, Kerman, Iran: geochemical evidence for the low-degree partial melting of enriched mantle

Petrogenesis of Plio-Quaternary basanites in the Gandom Beryan area, Kerman, Iran: geochemical evidence for the low-degree partial melting of enriched mantle

In the Gandom Beryan area, basanitic lava flows erupted from fractures in the Nayband fault zone and formed an areaof about 300 km 2of basanitic rocks in the western part of the Lut Block. Olivine and clinopyroxene are the major phenocrysts in amicrolitic groundmass for these basanitic rocks. The geochemical data show that Gandom Beryan rocks are basanite in compositionand belong to intercontinental rifts related to alkali basanites. These rocks have low Fe/Mg ratios (Fe 2 O 3t /MgO = 1.07 1.43) with lowsilica content (SiO 2= 44.89 48.26 wt.%) and are high-Ti basanites. The investigated rocks are characterized by a significant enrichmentof total REE and LREE relative to chondrite. Moreover, the REE patterns of these rocks are linear without any negative Eu anomalies.The low abundances of HREE in basanitic rocks and the REE modeling together reflect the relation between these elements and residualgarnet in the partially melted mantle. The207 Pb/ 204 Pb and206 Pb/ 204 Pb ratios of the basanitic rocks fall near the field of enriched mantle II(EM-II). The Gandom Beryan volcanism, which was related to partial melting of mantle within an extensional setting, resulted from aleft-step, pull-apart basin in the Nayband N S trending strike slip fault system. Although the fault system is older than Gandom Beryanvolcanism, it seems that it has been reactivated during and after the volcanism.

___

  • Aldanmaz E, Köprübaşı N, Gürer ÖF, Kaymakçi N, Gourgaud A (2006). Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: implications for mantle sources and melting processes. Lithos 86: 50-76.
  • Alibert C, Michard A, Albarede F (1983). The transition from alkali basalts to kimberlites: isotopic and trace element evidence from melilitites. Contrib Mineral Petrol 82: 176-186.
  • Alıcı P, Temel A, Gourgaud A (2002). Pb-Nd-Sr isotope and trace element geochemistry of Quaternary extension-related alkaline volcanism: a case study of Kula region (western Anatolia, Turkey). J Volcanol Geoth Res 115: 487-510.
  • Barry TL, Kent RW (1998). Cenozoic magmatism in Mongolia and the origin of Central and East Asian basalts. In: Flower MFJ, Chung SL, Lo CH, Lee TY, editors. Mantle Dynamics and Plate Interactions in East Asia. Geodynamics Series 27. AGU, Washington, pp. 347-364.
  • Basu AR, Wang JW, Huang WK, Xie GH, Tatsumoto M (1991). Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs. Earth Planet Sci Lett 105: 149-169.
  • Berberian M, King GCP (1981). Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18: 210-265.
  • Boynton WV (1984). Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P, editor. Rare Earth Element Geochemistry. Amsterdam, the Netherlands: Elsevier, pp. 63- 107.
  • Brenna M, Cronin SJ, Smith IEM, Maas R, Sohn YK (2012a). How small-volume basaltic magmatic systems develop: a case study from the Jeju Island Volcanic Field, Korea. J Petrol 53: 985- 1018.
  • Brenna M, Cronin SJ, Smith IEM, Sohn YK, Maas R (2012b). Spatio- temporal evolution of a dispersed magmatic system and its implications for volcano growth, Jeju Island Volcanic Field, Korea. Lithos 148: 337-352.
  • Cabanis B, Lecolle M (1989). Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des series volcaniques et la mise evidence des proccessus de mélange et/ou de contamination crustale. C.R. Academic Sci Seri II 309: 2023-2029 (in French).
  • Camp VE, Griffis RJ (1982). Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran. Lithos 15: 221-239.
  • Carlson RW, Lugmair GW, Macdougall JD (1981). Columbia River volcanism: the question of mantle heterogeneity or crustal contamination. Geochim Cosmochim Ac 45: 2483-2499.
  • Chang KH, Park JB, Kwon ST (2006). Geochemical characteristics of trachytes in Jeju Island. J Geol Soc Korea 42: 235-252.
  • Choi SH, Mukasa SB, Kwon ST, Andronikov AV (2006). Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chem Geol 232: 134-151.
  • Embey-Isztin A, Downes H, James DE, Upton BGJ, Dobosi G, Ingram GA, Harmon RS, Scharbert HG (1993). The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian Basin, Eastern Central Europe. J Petrol 34: 317-343.
  • Esmaiely D, Nédéléc A, Valizadeh MV, Moore F, Cotton J (2005). Petrology of the Jurrasic Shah-Kuh granite (eastern Iran), with reference to tin mineralization. J Asian Earth Sci 25: 961-980.
  • Fraser KJ, Hawkesworth CJ, Erland AJ, Mitchell RH, Scott-Smith BH (1985). Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth Planet Sci Lett 76: 57-70.
  • Gaetani GA, Grove TL (1995). Partitioning of rare earth elements between clinopyroxene and silicate melt crystal-chemical controls. Geochim Cosmochim Ac 59: 1951-1962.
  • Gale A, Dalton CA, Langmuir CH, Su Y, Schilling J (2013). The mean composition of ocean ridge basalts. Geochem Geophy Geosy 14: 489-518.
  • Gallahan WE, Nielson RL (1992). The partitioning of Sc, Y, and the rare earth elements between high-Ca pyroxene and natural mafic to intermediate lavas at 1 atmosphere. Geochim Cosmochim Ac 56: 2387-2404.
  • Green TH (1994). Experimental study of trace element partitioning applicable to igneous petrogenesis-Sedona 16 years later. Chem Geol 117: 1-36.
  • Harangi S, Vaselli O, Tonarini S, Szabó CS, Harangi R, Coradossi N (1995). Petrogenesis of Neogene extension-related alkaline volcanic rocks of the Little Hungarian Plain volcanic field (Western Hungary). In: Downes H, Vaselli, O, editors. Neogene and related magmatism in the Carpatho-Pannonian Region: Acta Vulcanologica, 7. pp. 173-187.
  • Hauri EH, Wagner TP, Grove TL (1994). Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem Geol 117: 149- 166.
  • Hawkesworth CJ, Gallager K, Kelley S, Mantovani MSM, Peate D, Regelous M, Rogers N (1992). Paraná magmatism and the opening of the South Atlantic. In: Storey B, Alabaster A, Pankhurst R, editors. Magmatism and the Causes of Continental Break-up. Geol Soc Spec Publ 68. pp. 221-240.
  • Hofmann AW, Jochum KP, Seufert M, White WM (1986). Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sc Lett 79: 33-45.
  • Humphreys ER, Niu Y (2009). On the composition of ocean island basalts (OIB): the effects of lithospheric thickness variation and mantle metasomatism. Lithos 112: 118-136.
  • Kim KH (2000). K-Ar ages and Nd–Sr isotopes of Dokdo alkali volcanic rocks in the East Sea, South Korea. J Geol Soc Korea 36: 313-324.
  • Kim KH, Keisuke N, Jang HS, Hirochika S, Chung JI (2002). Nd, Sr and noble gas isotopic compositions of alkali basaltic rocks and mantle xenoliths in the Baegryongdo. Econ Environ Geol 35: 523-532.
  • Kluyver HM, Griffis RJ, Alavi-Naini M, Chance PN, Meixner HM, Tirrul R (1981). Geological map of Lakar Kuh-1/250000, Sheet 7453. Geological survey of Iran.
  • Koszowska E, Wolska A, Zuchiewicz W, Cuong NQ, Pécskay Z, (2007). Crustal contamination of Late Neogene basalts in the Dien Bien Phu Basin, NW Vietnam: some insights from petrological and geochronological studies. J Asian Earth Sci 29: 1-17.
  • Kuritani T, Kimura JI, Miyamoto T, Wei H, Shimano T, Maeno F, Jin X, Taniguchi H (2009). Intraplate magmatism related to deceleration of upwelling asthenospheric mantle: implications from the Changbaishan shield basalts, northeast China. Lithos 112: 247-258.
  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986). A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27: 745-750.
  • Ma GSK, Malpas J, Xenophontos C, Suzuki K, Lo CH (2011b). Early Cretaceous volcanism of the Coastal Ranges, NW Syria: magma genesis and regional dynamics. Lithos 126: 290-306.
  • MacKenzie WS, Donaldson CH, Guilford C (1982). Atlas of Igneous Rocks and Their Textures. New York, NY, USA: Wiley.
  • Mahoney JJ (1988). Deccan traps. In: Macdougall JD, editor. Continental Flood Basalts. Dordrecht, Netherlands: Kluwer, pp. 151-194.
  • Marques LS, Dupré B, Piccirillo EM (1999). Mantle source compositions of the Paraná Magmatic Province (southern Brazil): evidence from trace element and Sr–Nd–Pb isotope geochemistry. J Geodyn 28: 439-458.
  • Meibom A, Anderson DL (2003). The statistical upper mantle assemblage. Earth Planet Sc Lett 217: 123-139.
  • Nabavi MH (1976). History of Iran Geology. Geological Survey and Mineral Exploration Country. Niu YL (2008). The origin of alkaline lavas. Science 320: 883-884.
  • O’Reilly SY, Zhang M (1995). Geochemical characteristics of lava- field basalts from eastern Australia and inferred sources: connections with the subcontinental lithospheric mantle. Contrib Mineral Petr 121: 148-170.
  • Pang KN, Chung SL, Zarrinkoub MH, Mohammadi SS, Yang HM, Chu CH, Lee HY, Lo CH (2012). Age, geochemical characteristics and petrogenesis of Late Cenozoic intraplate alkali basalts in the Lut–Sistan region, eastern Iran. Chem Geol 306: 40-53.
  • Park JB, Park KH (1996). Petrology and petrogenesis of the Cenozoic alkali volcanic rocks in the middle part of Korean peninsula (I): petrography, mineral chemistry and whole rock major element chemistry. J Geol Soc Korea 32: 223-249.
  • Park KH, Park JB, Cheong CS, Oh CW (2005). Sr, Nd and Pb isotopic systematics of the Cenozoic basalts of the Korean Peninsula and their implications for the Permo-Triassic continental collision boundary. Gondwana Res 8: 529-538.
  • Pearce JA, Bender JF, De Long SE, Kidd WSF, Low PJ, Güner Y, Saroglu F, Yilmaz Y, Moorbath S, Mitchell JG (1990). Genesis of collision volcanism in Eastern Anatolia, Turkey. J Volcanol Geoth Res 44: 189-229.
  • Peate DW, Hawkesworth CJ, Mantovani SM (1992). Chemical stratigraphy of the Paraná lavas (South America): classification of magma types and their spatial distribution. B Volcanol 55: 119-139.
  • Peters TJ, Menzies M, Thirwall M, Kyle PR (2008). Zuni-Bandera volcanism, Rio Grande, USA-Melt formation in garnet and spinel-facies mantle straddling the asthenosphere-lithosphere boundary. Lithos 102: 295-315.
  • Piccirillo EM, Melfi AJ (1988). The Mesozoic flood volcanism of the Paraná Basin: Petrogenetic and Geophysical Aspects. Universidade de São Paulo, São Paulo.
  • Raeisi D (2011). Geochemistry and petrogenesis of Gandom Beryan Quaternary lava flowed, north of Shahdad-Kerman: along with crystal size distribution and remote sensing studies, MSc, Shahid Bahonar University, Kerman. Iran.
  • Rocha-Júnior ERVR, Marques LS, Babinski M, Nardy AJR, Figueiredo AMG, Machado FB (2013). Sr-Nd-Pb isotopic constraints on the nature of the mantle sources involved in the genesis of the high-Ti tholeiites from northern Paraná Continental Flood Basalts (Brazil). J S Am Earth Sci 46: 9-25.
  • Rollinson HR (1993). Using Geochemical Data: Evaluation, Presentation and Interpretation. Singapore: Longman.
  • Saadat S, Karimpour MH, Stern Ch (2010). Petrochemical characteristics of neogene and quaternary alkali olivine basalts from the western margin of the Lut Block, Eastern Iran. Iran J Earth Sci 2: 87-106.
  • Salters VJM, Hart SR, Panto G (1988). Origin of late Cenozoic volcanic rocks of the Carpathian arc, Hungary. In: Royden LH, Horvath F, editors. The Pannonian Basin; a Study in Basin Evolution. Am Assoc of Petr Geol M 45. pp. 279-292.
  • Samani B, Zhuyi C, Xuetao G, Chuan T (1994). Geochemistry of Quaternary olivine basalts from the Lut Block, eastern Iran. Geol Q 3: 40-63.
  • Smith EI, Sánchez A, Walker JD, Wang K (1999). Geochemistry of mafic magmas in the Hurricane Volcanic Field, Utah: implications for small- and large-scale chemical variability of the lithospheric mantle. J Geol 107: 433-448.
  • Späth A, Le Roex AP, Opiyo-Akech N (2001). Plume-lithosphere interaction and the origin of continental rift-related alkaline volcanism-the Chyulu Hills Volcanic Province, southern Kenya. J Petrol 42: 765-787.
  • Stöcklin E, Eftekharnejad G, Hoshmandzadeh A (1971). Initial investigation of central Lut block, eastern Iran, Report No. 22, Geological survey of Iran.
  • Sun SS, McDonough WF (1989). Chemical and isotopic systematics of ocean basalt: implications for mantle composition and processes. In: Saunders AD, Norry M, editors. Magmatism in the Ocean Basins. Geol Soc Spec Publ 42. pp. 323-345.
  • Tang YJ, Zhang HF, Ying JF (2006). Asthenosphere–lithospheric mantle interaction in an extensional regime: implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chem Geol 233: 309-327.
  • Tatsumi Y, Shukuno H, Yoshikawa M, Chang Q, Sato K, Lee MW (2005). The petrology and geochemistry of volcanic rocks on Jeju Island: plume magmatism along the Asian continental margin. J Petrol 46: 523-553.
  • Tatsumoto M, Nakamura Y (1991). DUPAL anomaly in the Sea of Japan: Pb, Nd, and Sr isotopic variations at the eastern Eurasian continental margin. Geochim Cosmochim Acta 55: 3697-3708.
  • Taylor SR, McLennan SM (1995). The geochemical evolution of the continental crust. Rev Geophys 33: 241-265.
  • Thompson RN (1982). Magmatism of the British Tertiary province Scottish. J Geol 18: 49-107.
  • Walker RT, Gans P, Allen MB, Jackson J, Khatib M, Marsh N, Zarrinkoub M (2009). Late Cenozoic volcanism and rates of active faulting in eastern Iran. Geophys J Int 177: 783-805.
  • Walker R, Jackson J (2002). Offset and evolution of the Gowk fault, S.E. Iran: a major intra-continental strike-slip system. J Struct Geol 24: 1677-1698.
  • Weinstein Y, Navon O, Altherr R, Stein M (2006). The role of lithospheric mantle heterogeneity in the generation of Plio– Pleistocene alkali basaltic suites from NW Harrat Ash Shaam. J Petrol 47: 1017-1050.
  • Wilson M, Downes H (1991). Tertiary-Quaternary extension-related alkaline magmatism in Western and Central Europe. J Petrol 32: 811-849.
  • Winchester JA, Floyd PA (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20: 325-343.
  • Xu YG, Ma JL, Frey FA, Feigenson MD, Liu JF (2005). Role of lithosphere–asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chem Geol 224: 247-271.
  • Zhang HF, Sun M, Zhou XH, Fan WM, Zai MG, Ying JF (2002). Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol 144: 241-253.
  • Zindler A, Hart S (1986). Chemical geodynamics. Annu Rev Earth Planet Sci 14: 493-571.
  • Zou H, Reid MR, Liu Y, Yao Y, Xu X, Fan Q (2003). Constraints on the origin of historic potassic basalts from northeast China by U–Th disequilibrium data. Chem Geol 200: 189-201.
  • Zou H, Zindler A (1996). Constraints on the degree of dynamic partial melting and source composition using concentration ratios in magmas. Geochim Cosmochim Ac 60: 711-717.
  • Zou HB, Zindler A, Xu XS, Qi Q (2000). Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance. Chem Geol 171: 33-47