Peritectic assemblage entrainment and mafic–felsic magma interaction in the Late Oligocene–Early Miocene Karadağ Pluton in the Biga Peninsula, northwest Turkey: petrogenesis and geodynamic implications

Peritectic assemblage entrainment and mafic–felsic magma interaction in the Late Oligocene–Early Miocene Karadağ Pluton in the Biga Peninsula, northwest Turkey: petrogenesis and geodynamic implications

The Hellenic subduction system governs the entire Aegean region through the creation of a migrating magmatic arc that has existed since the beginning of the Early Cenozoic. The Karadağ Pluton is situated in the NW part of Turkey and represents one of the distinct snapshots of this subduction system during the Late Oligocene-Early Miocene Period.iod. It consists of 2 major lithological units, based on their petrographic and geochemical features, comprising: 1) main plutonic facies (SiO2 < 70 wt.%) that are dominated by hornblende- and biotite-bearing monzogranite, quartz monzonite, and granodiorite, and 2) late-stage more felsic facies (SiO2 > 70 wt.%) that are represented by cordierite-free and cordierite-bearing leucogranites. Zircon U-Pb laser ablation inductively-coupled plasma mass spectrometry and K-Ar dating revealed crystallization and cooling ages of 23.9 ± 0.5 Ma and 20.2 ± 0.9 Ma for the main plutonic bodies, and 22.0 ± 1.1 Ma for the leucogranite facies, respectively. The pluton had a high-K calc-alkaline affinity and exhibited a metaluminous to peraluminous (aluminum saturation index of

___

  • Altherr R, Holl A, Hegner E, Langer C, Kreuzer H (2000). Highpotassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50: 51-73. doi: 10.1016/S0024- 4937(99)00052-3
  • Altherr R, Siebel W (2002). I-type plutonism in a continental backarc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology 143: 397-415. doi: 10.1007/s00410-002-0352-y
  • Altınlı IE (1973). Bilecik Jurassic (Turkey). In: Doyran, S. (ed), Papers, Congress of Earth Sciences on the Occasion of the 50th Anniversary of the Turkish Republic. Ankara, Turkey: MTA Publication, pp. 105-114.
  • Altunkaynak Ş, Sunal G, Aldanmaz E, Genç CŞ, Dilek Y et al. (2012). Eocene Granitic magmatism in NW Anatolia (Turkey) revisited: new implications from comparative zircon SHRIMP U– Pb and 40Ar–39Ar geochronology and isotope geochemistry on magma genesis and emplacement. Lithos 155: 289-309. doi: 10.1016/j.lithos.2012.09.008
  • Annen C, Blund, J, Spark, RSJ (2006). The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology 47: 505-539. doi: 10.1093/petrology/egi084
  • Ayrton SN (1991). Appinites, lamprophyres and mafic microgranular enclaves: three related products of interaction between acid and basic magmas. In: Didier J, Barbarin B (eds). Enclaves and Granite Petrology. Developments in Petrology 13. Amsterdam, Netherlands: Elsevier, pp. 465-476.
  • Aysal N (2015). Mineral chemistry, crystallization conditions and geodynamic implications of the Oligo-Miocene granitoids in the Biga Peninsula, Northwest Turkey. Journal of Asian Earth Sciences 105: 68-84. doi: 10.1016/j.jseaes.2015.03.026
  • Aysal N, Keskin M, Peytcheva I, Duru O (2018). Geochronology, geochemistry and isotope systematics of a mafic–intermediate dyke complex in the İstanbul Zone. New constraints on the evolution of the Black Sea in NW Turkey. Geological Society, London, Special Publications 464 (1): 131-168. doi: 10.1144/ SP464.4
  • Aysal N, Öngen S, Hanilçi N, Kasapçı C, Laçin D et al. (2020). Late magmatic – hydrothermal tourmaline occurrences within leucogranites in NW Anatolia (Turkey): mineral chemistry and genetic implications. Geochemistry (in press). https://doi: 10.1016/j.chemer.2020.125676
  • Aysal N, Ustaömer T, Öngen S, Keskin M, Köksal S et al. (2012). Origin of the Early-Middle Devonian magmatism in the Sakarya Zone, NW Turkey: geochronology, geochemistry and isotope systematics. Journal of Asian Earth Sciences 45: 201-222. doi: 10.1016/j.jseaes.2011.10.011
  • Bartoli O, Acosta-Vigil A, Ferrero S, Cesare B (2016). Granitoid magmas preserved as melt inclusions in high-grade metamorphic rock. American Mineralogist 101: 1543-1559. doi: 10.2138/am2016-5541CCBYNCND
  • Baxter S, Feely M (2002). Magma mixing and mingling textures in granitoids: examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology 76: 63-74. doi: 10.1007/ s007100200032
  • Black KN, Catlos EJ, Oyman T, Demirbilek M (2013). Timing Aegean extension: evidence from in situ U–Pb geochronology and cathodoluminescence imaging of granitoids from NW Turkey. Lithos 180-181: 92-108. doi: 10.1016/j.lithos.2013.09.001
  • Blevin PL, Chappell BW (1992). The role of magma sources oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Transactions of the Royal Society of Edinburgh: Earth Sciences 83: 305-316. doi: 10.1017/ S0263593300007987
  • Castro A (2013). Tonalite–granodiorite suites as cotectic systems: a review of experimental studies with applications to granitoid petrogenesis. Earth-Science Reviews 124: 68-95. doi: 10.1016/j. earscirev.2013.05.006
  • Claeson DT, Meurer WP (2004). Fractional crystallization of hydrous basaltic “arc-type” magmas and the formation of amphibole-bearing gabbroic cumulates. Contributions to Mineralogy and Petrology 147: 288-304. doi: 10.1007/s00410-003-0536-0
  • Clarke DB (1995). Cordierite in felsic igneous rocks: a synthesis. Mineralogical Magazine 59: 311-325. doi: 10.1180/minmag.1995.059.395.15
  • Clemens JD (2006). Melting of the continental crust: fluid regimes, melting reactions, and source-rock fertility. In: Brown M, Rushmer T (eds.). Evolution and Differentiation of the Continental Crust. Cambridge, UK: pp. 296-327.
  • Clemens JD, Helps PA, Stevens G (2009). Chemical structure in granitic magmas – a signal from the source? Earth and Environmental Science Transactions of the Royal Society of Edinburgh 100: 159-172. doi:10.1130/2010.2472(11)
  • Clemens JD, Philips GN (2020). Granite suites: a problematic concept? Australian Journal of Earth Sciences. doi: 10.1080/08120099.2020.1701076.
  • Clemens JD, Stevens G (2012). What controls chemical variation in granitic magmas? Lithos 134-135: 317-329. doi: 10.1016/j. lithos.2012.01.001
  • Debon F, Le Fort P (1983). A chemical-mineralogical classification of common plutonic rocks and associations. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 73 (3): 135-149. doi: 10.1017/S0263593300010117
  • Debon F, Le Fort, P (1988). A cationic classification of common plutonic rocks and their magmatic associations: principles, method, applications. Bulletin de Minéralogie 111 (5): 493-510.
  • Delaloye M, Bingöl E (2000). Granitoids from Western and Northwestern Anatolia: geochemistry and modelling of geodynamic evolution. International Geology Review 42: 241-268. doi: 10.1080/00206810009465081
  • Dias G, Leterrier J (1994). The genesis of felsic-mafic plutonic associations: a Sr and Nd isotopic study of the Hercynian Braga Granitoid Massif (Northern Portugal). Lithos 32: 207-223. doi: 10.1016/0024-4937(94)90040-X
  • Erdmann S, Scaillet B, Kellett DA (2010). Xenocryst assimilation and formation of peritectic crystals during magma contamination: an experimental study. Journal of Volcanology and Geothermal Research 198 (3-4): 355-367. doi: 10.1016/j.jvolgeores.2010.10.002
  • Ersoy EY, Palmer MR (2013). Eocene-Quaternary magmatic activity in the Aegean: implications for mantle metasomatism and magma genesis in an evolving orogeny. Lithos 180-181: 5-24. doi: 10.1016/j.lithos.2013.06.007
  • Ersoy EY, Palmer MR, Genç ŞC, Prelević D, Akal C et al. (2017). Chemo-probe into the mantle origin of the NW Anatolia Eocene to Miocene volcanic rocks: implications for the role of crustal accretion, subduction, slab roll-back and slab break-off processes in genesis of post-collisional magmatism. Lithos 288: 55-71. doi: 10.1016/j.lithos.2017.07.006
  • Farina F, Stevens G, Dini A, Rocchi S (2012). Peritectic phase entrainment and magma mixing in the late Miocene Elba Island laccolith–pluton–dyke complex (Italy). Lithos 153: 243-260. doi: 10.1016/j.lithos.2012.05.011
  • Foster MD (1960). Interpretation of the composition of trioctahedral micas: United States Geological Survey. Professional Paper 354 (B): 1-146.
  • Giret A, Bonin B, Leger JM (1980). Amphibole compositional trends in oversaturated and under saturated alkaline plutonic ringcomplexes: Canadian Mineralogist 18: 481-495.
  • Gorton MW, Schandl ES (2000). From continents to island arcs: a geochemical index of tectonic setting for Arc-related and within-plate felsic to intermediate volcanic rocks. The Canadian Mineralogist 38 (5): 1065-1073. doi: 10.2113/gscanmin.38.5.1065
  • Harris NBW, Kelley S, Okay AI (1994). Post-collisional magmatism and tectonics in northwest Anatolia. Contributions to Mineralogy and Petrology 117: 241-252. doi: 10.1007/BF00310866
  • Hawkesworth CJ, Hergt JM, Ellam RM, McDermott F (1991). Element fluxes associated with subduction related magmatism. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences 335: 393-405. doi: 10.1098/rsta.1991.0054
  • Henry DJ, Guidotti CV, Thomson JA (2005). The Ti-saturation surface for low-to-medium pressure metapelitic biotite: implications for geothermometry and Ti-substitution mechanisms. American Mineralogist 90: 316-328. doi: 10.2138/ am.2005.1498
  • Hibbard MJ (1991). Textural anatomy of twelve magma-mixed granitoid systems: Enclaves and Granite Petrology. In: Didier J, Barbarin B (eds.). Developments in Petrology 13: 431-444. Hibbard MJ (1995). Petrography to Petrogenesis. Jersey city?, NJ, USA: Prentice Hall.
  • Kamacı Ö, Altunkaynak Ş (2020). The role of accreted continental crust in the formation of granites within the Alpine style continental collision zone: geochemical and geochronological constrains from leucogranites in the Çataldağ Metamorphic Core Complex (NW Turkey). Lithos 354-355: 105347. doi: 10.1016/j.lithos.2019.105347
  • Keskin M (2002). FC-modeler: a Microsofts Excel® spreadsheet program for modelling Rayleigh fractionation vectors in closed magmatic systems. Computers and Geosciences 28: 919-928. doi: 10.1016/S0098-3004(02)00010-9
  • Köprübaşı N, Aldanmaz E (2004). Geochemical constraints on the petrogenesis of Cenozoic I-Type granitoids in northwestern Anatolia, Turkey: evidence for magma generation by lithospheric delamination in post-collisional setting. International Geology Review 46: 405-429. doi: 10.2747/0020-6814.46.8.705
  • Laurent O, Martin H, Moyen JF, Doucelance R (2014). The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga.
  • Lithos 205: 208-235. doi: 10.1016/j.lithos.2014.06.012
  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC et al. (1997). Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association. Commission on New Minerals and Mineral Names. Canadian Mineralogist 35: 219-246.
  • Liew TC, Hofmann A (1988). Precambrian crustal components, plutonic associations, plate environment of the Hercynian fold belt of Central Europe; indications from Nd and Sr isotopic study. Contributions to Mineralogy and Petrology 98: 129-138. doi: 10.1007/BF00402106
  • Maniar PO, Piccoli PM (1989). Tectonic discrimination of granitoids. Geological Society of America Bulletin 101: 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  • Moyen JF, Stevens G (2006). Experimental constraints on TTG petrogenesis: implications for Archean geodynamics. American Geophysical Union Geophysical Monograph Series 164, pp.149. doi: 10.1029/164GM11
  • Nakano S (1992). Internal textures and chemical compositions of anti-rapakivi mantled feldspars from Oki-Dogo Island, Japan. Mineralogy and Petrology 46: 123-135.
  • Okay AI, Tüysüz O (1999). Tethyan sutures of northern Turkey. Geological Society, London, Special Publications 156 (1): 475-515. doi: 10.1144/GSL.SP.1999.156.01.22
  • Okay AI, Noble PJ, Tekin UK (2011). Devonian radiolarian ribbon cherts from the Karakaya Complex, Northwest Turkey: implications for the Paleo-Tethyan evolution. Comptes Rendus Palevol 10 (1): 1-10. doi: 10.1016/j.crpv.2010.12.002
  • Palin RM, White RW, Green EC, Diener JF, Powell R et al. (2016). High grade metamorphism and partial melting of basic and intermediate rocks. Journal of Metamorphic Geology 34 (9): 871-892. doi: 10.1111/jmg.12212
  • Patiño Douce AE (1999). What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro A, Fernandez C, Vigneresse JL (eds.) Understanding granites. Integrating New and Classical Techniques. London, UK: Geological Society, Special Publication 168: 55-75. doi: 10.1144/GSL.SP.1999.168.01.05
  • Pearce JA (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds.). Continental Basalts and Mantle Xenolites. Nantwich, Shiva, 230-249.
  • Pearce JA, Bender JF, DeLong SE, Kidd WSF, Low PJ et al. (1990). Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research 44 (1-2): 189-229. doi: 10.1016/0377-0273(90)90018-B
  • Pearce JA, Harris NBW, Tindle AG (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25: 956-983. doi: 10.1093/petrology/25.4.956
  • Peccerillo R, Taylor SR (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area. Northern Turkey. Contribution of Mineralogy and Petrology 58: 63-81. doi: 10.1007/BF00384745
  • Pe-piper G, Piper DJ (1989). Spatial and temporal variation in late Cenozoic back-arc volcanic rocks, Aegean Sea region. Tectonophysics 169 (1-3): 113-134. doi: 10.1016/0040-1951(89)90186- 8
  • Putirka K (2016). Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. American Mineralogist 101 (4): 841-858. doi: 10.2138/am-2016-5506
  • Rezaei-Kahkhaei M, Galindo C, Pankhurst RJ, Esmaeily D (2011). Magmatic differentiation in the calc-alkaline Khalkhab–Neshveh pluton, Central Iran. Journal of Asian Earth Sciences 42 (3): 499-514. doi: 10.1016/j.jseaes.2011.04.022
  • Ridolfi F, Renzulli A (2012). Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1.130° C and 2.2 GPa. Contributions to Mineralogy and Petrology 163: 877-895. doi: 10.1007/ s00410-011-0704-6
  • Ridolfi F, Renzulli A, Puerini M (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology 160: 45-66. doi: 10.1007/s00410-009-0465-7
  • Rudnick RL, Gao S (2003). Composition of the continental crust. In: Rudnick RL (ed.). The crust, Treatise on Geochemistry 3: 1-64. doi: 10.1016/B0-08-043751-6/03016-4
  • Shand SJ (1943). Eruptive Rocks. London, UK: T. Murby
  • Stevens G, Villaros A, Moyen JF (2007). Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology 35 (1): 9-12. doi: 10.1130/G22959A.1
  • Streckeisen AL, Le Maitre RW (1979). A chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jahrbuch fur Mineralogie, Abhandlungen 136: 169-206.
  • Sun SS, McDonough WF (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society London Special Publication 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
  • Taylor J, Stevens G (2010). Selective entrainment of peritectic garnet into S-type granitic magmas: evidence from Archaean midcrustal anatectites. Lithos 120 (3-4): 277-292. doi: 10.1016/j. lithos.2010.08.015
  • Thompson AB (1982). Dehydration melting of pelitic rocks and the generation of H2 O-undersaturated granitic liquids. American Journal of Science 282: 1567-1595. doi:10.2475/ajs.282.10.1567
  • Tindle AG, Pearce JA (1981). Petrogenetic modelling of in situ fractional crystallization in the zoned Loch Doon pluton, Scotland. Contributions to Mineralogy and Petrology 78: 196-207. doi: 10.1007/BF00373781
  • Vegas N, Rodriguez J, Cuevas J, Siebel W, Esteban JJ et al. (2011). The sphene-centered ocellar texture: an effect of grain-supported flow and melt migration in a hyperdense magma mush. The Journal of Geology 119 (2): 143-157. doi: 10.1086/658200
  • Villaseca C, Barbero L, Herreros V (1998). A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Transactions of the Royal Society of Edinburgh: Earth Sciences 89 (2): 113-119. doi: 10.1017/ S0263593300007045
  • Walker AJ, Carr JM (1986). Compositional variations caused by phenocryst sorting at Cerro Negro volcano, Nicaragua. Geological Society of America 97 (9): 1156-1162. doi: 10.1130/0016-7606(1986)97<1156:CVCBPS>2.0.CO;2
  • Wones DR (1989). Significance of the assemblage titanite + magnetite + quartz in granitic rocks. American Mineralogist 74 (7-8): 744-749.
  • Yakymchuk C (2019). On granites. Journal Geological Society of India 94: 9-22. doi: 10.1007/s12594-019-1261-2
  • Yılmaz Şahin S, Aysal N, Güngör Y (2012). Petrogenesis of late cretaceous adakitic magmatism in the İstanbul zone (Çavuşbaşı Granodiorite, NW Turkey). Turkish Journal of Earth Sciences 21 (6): 1029-1045. doi: 10.3906/yer-1005-15
  • Zhou ZX (1986). The origin of intrusive mass in Fengshandong, Hubei province. Acta Petrologica Sinica 2: 59-70.
  • Zhu Y, Lai SC, Qin JF, Zhu RZ, Zhang FY et al. (2020). Petrogenesis and geochemical diversity of Late Mesoproterozoic S-type granites in the western Yangtze Block, South China: co-entrainment of peritectic selective phases and accessory minerals. Lithos 352-353: 105326. doi: 10.1016/j.lithos.2019.105326
Turkish Journal of Earth Sciences-Cover
  • ISSN: 1300-0985
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK