Luminescence dating of Quaternary marine terraces from the coastal part of Eastern Black Sea and their tectonic implications for the Eastern Pontides, Turkey

Luminescence dating of Quaternary marine terraces from the coastal part of Eastern Black Sea and their tectonic implications for the Eastern Pontides, Turkey

The timing of the deposition of the well-preserved Quaternary marine terraces in the coastal region of northeastern Turkey are crucial in understanding the Quaternary tectonics of the Pontides. The chronology of raised marine terraces between Trabzon and Rize has remained unrevealed because of chronologic limitations. This study aims to establish chronology for the terrace deposits by applying optically stimulated luminescence (OSL) dating methods using single aliquot regenerative dose (SAR) techniques on quartz grains extracted from marine terraces. Eleven samples were collected from the lowest three Quaternary marine terraces. The OSL ages clusters into three groups: 52.4 ± 4.6 to 60.0 ± 4.7 ka (terrace level T1); 16.8 ± 0.8 to 33.9 ± 2.8 ka (T2); and 11.7 ± 0.9 ka (T3). This chronology is consistent with the classical terrace stratigraphy; i.e. younger terraces are located at lower elevations and vice versa for the older terraces. We correlate the established terrace chronology with MIS 3c, MIS 3a, and MIS 1. We calculated apparent uplift rates are 0.98 ± 0.12 mm/year, 1.39 ± 0.26 mm/year, and 1.50 ± 0.78 mm/year from marine terrace levels 1, 2, and 3, respectively. Based on the existing eustatic sea-level data/curve, we estimated tectonic uplift rates up to 5 mm per year. Our results indicate that the coastal region of the Eastern Pontides experienced three accumulation periods, with sea-level highstands overprinting the uplifting coastline, and the coastal region of Eastern Pontides has been tectonically active from Late Pleistocene to Early Holocene. This study reveals that marine terraces in the coastal region of northeastern Anatolia might have displaced by the South Black Sea Fault which ultimately points to a regional subsidence with the higher uplift rate, and it points to a differential uplift along the Eastern Pontides.

___

  • Adamia SA, Lordkipanidze MB, Zakariadze GS (1977). Evolution of an active continental margin as exemplified by the Alpine history of the Caucasus. Tectonophysics 40: 183-189.
  • Aitken MJ (1985). Thermoluminescence Dating. London, UK: Academic Press.
  • Aitken MJ (1998). An Introduction to Optical Dating. London, UK: Oxford University Press.
  • Aksu AE, Hiscott RN, Kaminski MA, Mudie PJ, Gillespie H et al. (2002). Last glacial-Holocene paleoceanography of the Black Sea and Marmara Sea: stable isotopic, foraminiferal and coccolith evidence. Marine Geology 190: 119-149.
  • Altıntaş F (2014). Determining the current tectonic movements during the Line Gümüşhane-Trabzon with GNSS data. Master Thesis, Gümüşhane University, Gümüşhane, Turkey (in Turkish).
  • Ardel A (1943). Trabzon ve civarının morfolojisi üzerine gözlemler. Türk Coğrafya Dergisi 1: 71-82 (in Turkish).
  • Avagyan A, Sosson M, Karakhanian A, Philip H, Rebai S et al. (2010). Recent tectonic stress evolution in the Lesser Caucasus and adjacent regions. Geological Society of London Special Publications 340: 393-408.
  • Aytac A (2012). An approach to the sea level changes to base on the marine terraces of the Turkish Black Sea coasts. Quaternary International 30: 279-280.
  • Badertscher S, Fleitmann D, Cheng H, Edwards RL, Göktürk OM et al. (2011). Pleistocene water intrusions from the Mediterranean and Caspian seas into the Black Sea. Nature Geoscience 4: 236- 239. doi: 10.1038/ngeo1106
  • Badgley PC (1965). Structural and Tectonic Principles. New York, NY, USA: Harper International Press.
  • Bateman MD (2015). The application of luminescence dating to sealevel studies. In: Shennan I, Long AJ, Horton BP (editors).
  • Handbook of Sea-level Research. Chichester, USA: American Geophysical Union, pp. 404-420.
  • Bektaş O, Yılmaz C, Taslı K, Akdag K, Ozgur S (1995). Cretaceous, rifting of the eastern Pontide carbonate platform (NE Turkey): the formation of carbonate breccias and turbidites as evidence of a drowned platform. Giornale di Geologia 57 (1-2): 233-244.
  • Bektaş O, Şen C, Atıcı Y, Köprübası N (1999). Migration of the Upper Cretaceous subduction related volcanism towards the backarc basin of the eastern Pontide magmatic arc (NE Turkey). Geological Journal 34: 95-106.
  • Berndt C, Yıldırım C, Çiner A, Strecker MR, Ertunç G et al. (2018). Quaternary uplift of the northern margin of the Central Anatolian Plateau: New OSL dates of fluvial and delta-terrace deposits of the Kızılırmak River, Black Sea coast, Turkey. Quaternary Science Reviews 201: 446-469.
  • Beukens RP (1994). Procedures and precision in 14C AMS. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 92 (1-4): 182-187.
  • Bøtter-Jensen L, Andersen CE, Duller GAT, Murray AS (2003). Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements 37 (4-5): 535-541.
  • Chepalyga AL (1984). Inland Sea Basin. Late Quaternary Environments of the Soviet Union. In: Velichko AA, Wright Jr. HE, Barnowsky CW (editors). English ed. Minneapolis, MN, USA: University of Minnesota Press, pp. 229-247.
  • Choi JH, Murray AS, Cheong CS, Hong DG, Chang HW (2003a). The resolution of stratigraphic inconsistency in the luminescence ages of marine terrace sediments from Korea. Quaternary Science Reviews 22: 1201-1206.
  • Choi JH, Murray AS, Jain M, Cheong CS, Chang HW (2003b). Luminescence dating of well-sorted marine terrace sediments on the southeastern coast of Korea. Quaternary Science Reviews 22: 407-421.
  • Cunningham AC, Wallinga J, Hobo N, Versendaal AJ, Makaske B et al. (2015). Re-evaluating luminescence burial doses and bleaching of fluvial deposits using Bayesian computational statistics. Earth Surface Dynamics 3: 55-65.
  • Çağatay MN, Wulf S, Sancar Ü, Özmaral A, Vidal L et al. (2015). The tephra record from the Sea of Marmara for the last ca. 70 ka and its palaeoceanographic implications. Marine Geology 36: 96-110.
  • Dewey JF, Pitman WC, Ryan WBF, Bonnin J (1973). Plate tectonics and evolution of the Alpine system. Geological Society of America Bulletin 84: 3137-3180.
  • Duller GAT (2003). Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37: 161-165.
  • Duller GAT (2007). Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements. Ancient TL 25: 15-24.
  • Erginal AE, Ekinci YL, Demirci A, Bozcu M, Ozturk MZ et al. (2013). First record of beachrock on Black Sea coast of Turkey: implications for Late Holocene sea-level fluctuations. Sedimentary Geology 294: 294-302.
  • Erol O (1952). Trabzon şekilleri hakkında bir not. Dil ve Tarih Coğrafya Fakültesi Dergisi 10: 125-136 (in Turkish).
  • Erturaç MK (2020). Late Pleistocene-Holocene characteristics of the North Anatolian Fault at Adapazarı Basin: evidences from the age and geometry of the fluvial terrace staircases. Turkish Journal of Earth Sciences 30: 93-115. doi: 10.3906/yer-2006-25
  • Erturaç MK, Güneç Kıyak N (2017). Yeşilırmak taraçalarında (Orta Kuzey Anadolu) geç pleyistosen iklim değişiklikleri ve düşey yönlü deformasyona akarsu cevabının araştırılması. Türkiye Jeoloji Bülteni 60: 615-636. doi: 10.25288/tjb.370625 (in Turkish).
  • Eyuboglu Y, Bektas O, Seren A, Nafız M, Jacoby WR et al. (2006). Three-directional extensional deformation and formation of the Liassic rift basins in the eastern Pontides (NE Turkey). Geologica Carpathica 57 (5): 337-346.
  • Eyuboglu Y, Bektaş O, Pul D (2007). Mid-Cretaceous olistostromal ophiolitic melange developed in the back-arc basin of the eastern Pontide magmatic arc (NE Turkey). International Geology Review 49 (12): 1103-1126.
  • Eyuboglu Y, Santosh M, Bektaş O, Ayhan S (2011). Arc magmatism as a window to plate kinematics and subduction polarity: example from the eastern Pontides belt, NE Turkey. Geoscience Frontiers 2 (1): 49-56.
  • Fattahi M, Walker R, Hollingsworth J, Bahroudi A, Nazari H et al. (2006). Holocene slip-rate on the Sabzevar thrust fault, NE Iran, determined using optically-stimulated luminescence (OSL). Earth Planetary Science Letter 245 (3-4): 673-684.
  • Fattahi M, Nazari H, Bateman MD, Meyere B, Sébrier M et al. (2010). Refining the OSL age of the last earthquake on the Dheshir fault, Central Iran. Quaternary Geochronology 5 (2-3): 286- 292.
  • Florentin JA, Blackwell BAB, Tüysüz O, Tarı U, Genç ŞC et al. (2014). Monitoring tectonic uplift and paleoenvironmental reconstruction for marine terraces near Mağaracık and Samandağ, Hatay Province, Turkey. Radiation Protection Dosimetry 159 (1/4): 220-232. doi: 10.1093/rpd/ncu179
  • Galbraith RF (1990). The radial plot: graphical assessment of spread in ages. Nuclear Tracks and Radiation Measurements 17: 197- 206.
  • Galbraith RF, Roberts RG, Laslett GM, Yoshida H, Olley JM (1999). Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models. Archaeometry 4: 339-364.
  • Galbraith RF, Roberts RG, Yoshida H (2005). Error variation in OSL palaeodose estimates from single aliquots of quartz: a factorial experiment. Radiation Measurements 39: 289-307.
  • Galbraith RF, Roberts RG (2012). Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quaternary Geochronology 11: 1-27.
  • Gedikoğlu A (1970); Etude Géologique de la Région de Gölköy (Province D’ Ordu-Turquie). PhD, University of Grenoble, Grenoble, France.
  • Gilmore GR (2008). Practical gamma-ray spectrometry. 2nd ed. Warrington, UK: John Wiley & Sons, Ltd.
  • Gök R, Mellors RJ, Sandvol E, Pasyanos M, Hauk T et al. (2016). Lithospheric velocity structure of the Anatolian plateau Caucasus-Caspian region. Journal of Geophysical Research Solid Earth 116 (B5): 2156-2202.
  • Gurrola LD, Keller EA, Chen JH, Owen LA, Spencer JQG (2014). Tectonic geomorphology of marine terraces: Santa Barbara fold belt, California. Geological Society of America Bulletin 126: 219-233.
  • Güven İH (1993). Geological and Metallogenic Map of the Eastern Black Sea Region; 1:250,000 Map. Trabzon, Turkey: General Directorate of Mineral Research and Exploration.
  • Grün R (1989). Electron spin resonance (ESR) dating. Quaternary International 1: 65-109.
  • Hamilton WJ (1842). Researches in asia minor, pontus and armenia with some account of their antiquities and geology. 1st ed. London, UK: Cambridge University Press.
  • Hässig M, Duretz T, Rolland Y, Sosson M (2016). Obduction of old oceanic lithosphere (80 Ma) due to thermal rejuvenation and the role of postobduction extension, insights from NE Anatolia-Lesser Caucasus ophiolite and numerical modelling. Journal of Geodynamics 96: 35-49.
  • Hiscott RN, Aksu AE, Yaşar D, Kaminski MA, Mudie PJ et al. (2002). Deltas south of the Bosphorus Strait record persistent Black Sea outflow to the Marmara Sea since ~10 ka. Marine Geology 190: 95-118.
  • Hiscott RN, Aksu AE, Mudie PJ, Kaminski MA, Abrajano T et al. (2007). The Marmara Sea gateway since ~16 ky BP: noncatastrophic causes of paleoceanographic events in the Black
  • Sea at 8.4 and 7.15 ky BP. In: Yanko-Hombach V, Gilbert AS, Dolukhanov PM (editors). The Black Sea Flood Question. Netherlands: Springer, pp. 89-117.
  • Hreinsdóttir S, Bennett RA (2009). Active aseismic creep on the Alto Tiberina low-angle normal fault, Italy. Geology 27 (8): 683-686.
  • Jacobs Z (2008). Luminescence chronologies for coastal and marine sediments. Boreas 37: 508-535.
  • Jara-Muñoz J, Melnick D, Brill D, Strecker MR (2015). Segmentation of the 2010 Maule Chile earthquake rupture from a joint analysis of uplifted marine terraces and seismic cycle deformation patterns. Quaternary Science Review 113: 171- 192. doi: 10.1016/j.quascirev.2015.01.005
  • Johnson WC, Halfen AF, Spencer JQG, Hanson PR, Mason JA et al. (2019). Late MIS 3 stabilization of dunes in the eastern Central Great Plains, USA. Aeolian Research 36: 68-81.
  • Karabacak V, Altunel E, Çakır Z (2011). Monitoring aseismic surface creep along the North Anatolian Fault (Turkey) using groundbased LIDAR. Earth and Planetary Science Letters 304 (1-2): 64-70.
  • Karajiyan H (1920). Mineral Resources of Armenia and Anatolia. 1st ed. Newyork, NY, USA: Armenia Press.
  • Keskin S (2007). Güneydoğu (GD) Karadeniz Sahil Kesiminin (Trabzon Yöresi) Denizel Taraçaları ve Aktif Tektoniği. Master Thesis, Karadeniz Technical University, Trabzon, Turkey (in Turkish).
  • Keskin S, Pedoja K, Bektas O (2011). Coastal uplift along the eastern Black Sea coast: new marine terrace data from Eastern Pontides, Trabzon (Turkey) and a Review. Journal of Coastal Research 27: 63-73.
  • Koçyiğit A, Yılmaz A, Adamia S, Kuloshvili S (2001). Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: implication for transition from thrusting to strike-slip faulting. Geodinamica Acta 14: 177-95.
  • Krijgsman W, Tesakov A, Yanina T, Lazarev S, Danukalov G et al. (2019). Quaternary time scales for the Pontocaspian domain: Interbasinal connectivity and faunal evolution. Earth-Science Reviews 188:1-40. doi: 10.1016/j.earscirev.2018.10.013
  • Kurbanov RN, Svitoch AA, Yanina TA (2014). New Data on Marine Pleistocene Stratigraphy of the Western Cheleken Peninsula. Doklady Earth Sciences 459 (2): 1623-1626. doi: 10.1134/ S1028334X14120265
  • Lajoie KR (1986). Coastal tectonics. In: Wallace RE (editor). Active Tectonics: Impact on Society. Washington, DC, USA: The National Academies Press, pp. 95-124.
  • Lamothe M (2016). Luminescence dating of interglacial coastal depositional systems: Recent developments and future avenues of research. Quaternary Science Reviews 146: 1-27.
  • Maden N, Özturk S (2015). Seismic b-values, bouguer gravity and heat flow data beneath Eastern Anatolia, Turkey: Tectonic implications. Surveys in Geophysics 36: 549-570.
  • McClusky S, Balassanian S, Barka A, Demir C, Ergintav S et al. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research B Solid Earth 105: 5695-5719.
  • McClusky S, Reilinger R, Mahmoud S, Ben Sari D, Tealeb A (2003). GPS constraints on Africa (Nubia) and Arabia plate motion: Geophysical Journal International 155: 126-138.
  • McKenzie D (1972). Active tectonic of the Mediterranean region. Geophysical Journal of the Royal Astronomical Society 30: 109-185.
  • Murray AS, Wintle AG (2000). Luminescence dating of quartz using an improved single aliquot regenerative-dose protocol. Radiation Measurements 33: 57-73.
  • Murray AS, Wintle AG (2003). The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37: 377-381.
  • Murray AS, Marten R, Johnston A, Martin P (1987). Analysis for naturally occurring radionuclides at environmental concentrations by gamma spectrometry. Journal of Radioanalytical and Nuclear Chemistry 115: 263-288.
  • Nalin R, Lamothe M, Auclair M, Massari F (2020). Chronology of the marine terraces of the Crotone Peninsula (Calabria, southern Italy) by means of infrared-stimulated luminescence (IRSL). Marine and Petroleum Geology 122: 104645.
  • Nas M, Lyubushin A, Softa M, Bayrak Y (2020). Comparative PGAdriven probabilistic seismic hazard assessment (PSHA) of Turkey with a Bayesian perspective. Journal of Seismology. doi: 10.1007/s10950-020-09940-5
  • Nesmeyanov SA. (1995). Pleistocene deformation of Black Sea terraces along the Caucasus coast. Geotectonics 29 (3): 259- 269.
  • Nilforoushan F, Masson F, Vernant P, Vigny C, Martinod J et al. (2003). GPS network monitors the Arabia-Eurasia collision deformation in Iran. Journal of Geodesy 77: 411-422.
  • Normand R, Simpson G, Herman F, Biswas RH, Bahroudi A et al. (2019). Dating and morpho-stratigraphy of uplifted marine terraces in the Makran subduction zone (Iran). Earth Surface Dynamics 7 (1): 321-344.
  • Okay A, Zattin M, Sunal G (2020). Uplift of Anatolia. Turkish Journal of Earth Sciences 29: 696-713.
  • Ortlieb L, Fournier M, Macharé J (1992). Sequences of Holocene beach ridges in northern Peru–chronological framework and possible relationships with former El Niño events. In: Paleo ENSO Records International Symposium; Lima, Peru. pp. 215- 223.
  • Oswald F (1906). Geology of Armenia. PhD, University of London, London, UK.
  • Özalp S (2020). Late Pleistocene-Holocene lake terraces, water level change, and active tectonics: Eastern coast of Lake Van, Eastern Anatolia, Turkey. Quaternary International 542: 54-64. doi: 10.1016/j.quaint.2020.02.037
  • Özkaymak C, Sozbilir H, Gecievi OM, Tiryakioglu I (2019). Late Holocene coseismic rupture and aseismic creep on the Bolvadin Fault, Afyon Akşehir Graben, Western Anatolia. Turkish Journal of Earth Sciences 28: 787-804.
  • Özsayar T (1971). Palaontologie und Geologie des Gebietes Ostlich Trabzon (Anatolien). PhD Thesis, University of Giessen, Germany.
  • Panin N (1983). Black Sea Coast line changes in the Last 10.000 Years. A new attempt at identifying the Danube mouths as described by the ancients. Dacia. Revue d’Archéologie et d’Histoire Ancienne Bucuresti 27 (1-2): 175-184.
  • Panin N, Popescu I (2007). The northwestern Black Sea: climatic and sea-level changes in the late Quaternary. In: Yanko-Hombach Y, Gilbert AS, Panin N, Dolukhanov P. (Eds). The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Dordrecht, The Netherlands: Springer, pp. 387-404.
  • Pedoja K, Dumont JF, Lamothe M, Ortlieb L, Collot JY et al. (2006). Plio‐Quaternary uplift of the Manta Peninsula and La Plata Island and the subduction of the Carnegie Ridge, central coast of Ecuador. Journal of South American Earth Sciences 22:1-21. doi: 10.1016/j.jsames.2006.08.003
  • Pedoja K, Husson L, Regard V, Cobbold PR, Ostanciaux E et al. (2011). Relative sea-level fall since the last interglacial stage: are coasts uplifting worldwide? Earth Science Review 108 (1- 2): 1-15.
  • Pedoja K, Husson L, Bezos A, Pastier A, Imran AM et al. (2018). On the long-lasting sequences of coral reef terraces from SE Sulawesi (Indonesia): distribution, formation, and global significance. Quaternary Science Review 188: 37-57. doi: 10.1016/j.quascirev.2018.03.033
  • Philip H, Cisternas A, Gvishiani A, Gorshkov A (1989). The Caucasus: an actual example of the initial stage of continental collision. Tectonophysics 161: 1-21.
  • Preusser F, Degering D, Fuchs M, Hilgers A, Kadereit A et al. (2008). Luminescence dating: basics, methods and applications. Quaternary Science Journal 57 (1-2): 95-149.
  • Prescott JR, Hutton JT (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements 23: 497-500. doi: 10.1016/1350-4487(94)90086-8
  • Railsback LB, Gibbard PL, Head MJ, Voarintsoa NRG, Toucanne S (2015). An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews 111: 94-106. doi: 10.1016/j. quascirev.2015.01.012
  • Rhodes EJ, Singarayer JS, Raynal JP, Westaway KE, Sbihi-Alaoui FZ (2006). New age estimates for the Palaeolithic assemblages and Pleistocene succession of Casablanca, Morocco. Quaternary Science Reviews 25: 2569-2585.
  • Rhodes EJ (2011). Optically Stimulated Luminescence Dating of Sediments over the Past 200,000 Years. Annual Review of Earth and Planetary Sciences 39: 461-488.
  • Riedel W (1929). Zur mechanik geologischer brucherscheinungen. Zentralblatt für Mineralogie. Geologie Und Paläontologie 1929 (B): 354-368.
  • Roberts RG, Galbraith RF, Olley JM, Yoshida H, Laslet GM (1999). Optical dating of single and multiple grains of quartz from Jinmium Rock Shelter, Northern Australia: Part II, results and implication. Archaeometry 41: 365-395.
  • Roberts GP, Meschis M, Houghton S, Underwood C, Briant RM (2013). The implications of revised Quaternary paleo shoreline chronologies for the rates of active extension and uplift in the upper plate of subduction zones, Quaternary Science Review 78: 169-187. doi: 10.1016/j.quascirev.2013.08.006
  • Ryan WBF, Major CO, Lericolais G, Goldstein SL (2003). Catastrophic flooding of the Black Sea. Annual Review of Earth and Planetary Sciences 31: 525-554.
  • Ryan WBF (2007). Status of the Black Sea flood hypothesis. In: Yanko-Hombach V, Gilbert AS, Dolukhanov PM (editors). The Black Sea Flood Question. The Netherlands: Springer, pp. 63- 88.
  • Saillard M, Hall SR, Audin L, Farber DL, Hérail G et al (2009). Nonsteady long-term uplift rates and Pleistocene marine terrace development along the Andean margin of Chile (31S) inferred from 10Be dating. Earth Planetary Science Letters 277: 50-63. doi: 10.1016/j.epsl.2008.09.039
  • Sançar T, Zabcı C, Akçar N, Karabacak V, Yeşilyurt S et al (2020). Geodynamic importance of the strike-slip faults at the eastern part of the Anatolian Scholle: Inferences from the uplift and slip rate of the Malatya Fault (Malatya-Ovacık Fault Zone, eastern Turkey). Journal of Asian earth sciences 188: 104091.
  • Schulz SS, Mavko GM, Burford RO, Stuart WD (1982). Longterm fault creep observations in central California, Journal Geophysical Research 87: 6977-6982.
  • Schwarcz HP (1989). Uranium series dating of Quaternary deposits. Quaternary International 1: 7-17.
  • Semerci A (1990). Trabzon Ili Yerlesim Alaninin Muhendislik Jeolojisi Acisindan Incelenmesi. Master Thesis, Karadeniz Technical University, Trabzon, Turkey (in Turkish).
  • Siddall M, Chappell J, Potter EK (2006). Eustatic Sea level during past interglacials. In: Sirocko F, Litt T, Claussen M, Sanchez-Goni MF (editors). The Climate of Past Interglacials. Amsterdam, Netherlands: Elsevier, pp. 75-92.
  • Sieh KE, Williams PH (1990). Behavior of the southernmost San Andreas Fault during the past 300 years. Journal of Geophysical Research 95 (B5): 6629-6645.
  • Smith AD, Taymaz T, Oktay F, Yüce H, Alpar B et al. (1995). High resolution seismic reflection profiling in the Sea of Marmara (northwest Turkey): late Quaternary sedimentation and sealevel changes. Bulletin of the Geological Society of America 107: 923-936.
  • Softa M, Emre T, Sözbilir H, Spencer JQG, Turan M (2018). Geomorphic evidence for active tectonic deformation in the coastal part of Eastern Black Sea, Eastern Pontides, Turkey. Geodinamica Acta 30 (1): 249-264.
  • Softa M, Emre T, Sözbilir H, Spencer JQG, Turan M (2019). Field evidence for Southeast Black Sea Fault of Quaternary age and its tectonic implications, Eastern Pontides, Turkey. Geological Bulletin of Turkey 62: 17-40.
  • Solmaz F (1990). Vakfikebir-Yomra arası kıyı şeridinin morfolojisi ve taraçalar. Master Thesis, İstanbul University, İstanbul, Turkey (in Turkish).
  • Sosson M, Stephenson R, Sheremet Y, Rolland Y, Adamia S et al. (2016). The Eastern Black Sea-Caucasus region during the Cretaceous: new evidence to constrain its tectonic evolution. Comptes Rendus Geoscience 348: 23-32.
  • Spencer JQG, Oviatt CG, Pathak M, Fan Y (2015). Testing and refining the timing of hydrologic evolution during the latest Pleistocene regressive phase of Lake Bonneville. Quaternary International 362: 139-145.
  • Spencer JQG, Robinson RAJ (2008). Dating intramontane alluvial deposits from NW Argentina using luminescence techniques: problems and potential. Geomorphology 93: 144-156.
  • Spratt RM, Lisiecki LE (2016). A Late Pleistocene sea level stack. Climate of the Past 12:1079-1092. doi: 10.5194/cp-12-1079- 2016
  • Stahl T, Quigley MC, McGill A, Bebbington MS (2016). Modeling earthquake moment magnitudes on imbricate reverse faults from paleoseismic data: Fox Peak and Forest Creek Faults, South Island, New Zealand. Bulletin Seismological Society of America 106 (5): 2345-2363.
  • Şengör AMC (1979). The North Anatolian transform fault: its age, offset and tectonic significance. Journal of Geological Society 136: 269-282.
  • Şengör AMC, Yılmaz Y (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75: 181-241.
  • Tanaka K, Hataya R, Spooner NA, Questiaux DG, Saito Y et al. (1997). Dating of marine terrace sediments by ESR, TL and OSL methods and their applicabilities. Quaternary Science Reviews 16: 257-264.
  • Tarı U, Tüysüz O, Blackwell BAB, Mahmudd Z, Florentin JA et al (2018). Sea level change and tectonic uplift from dated marine terraces along the eastern Mediterranean coast, southeastern Turkey. Palaeogeography, Palaeoclimatology, Palaeoecology 511 (15): 80-102. doi: 10.1016/j.palaeo.2018.07.003
  • Tsereteli N, Tibaldi A, Alania V, Gventsadse A, Enukidze O et al. (2016). Active tectonics of central-western Caucasus, Georgia. Tectonophysics 691: 328-344.
  • Tsodoulos IM, Stamoulis K, Caputo R, Koukouvelas I, Chatzipetros A et al. (2016). Middle-Late Holocene earthquake history of the Gyrtoni Fault, Central Greece: insight from optically stimulated luminescence (OSL) dating and paleoseismology. Tectonophysics 687: 14-27.
  • Urbanova P, Hourcade D, Ney C, Guibert P (2015). Sourecs of uncertainties in OSL dating of archaeological mortars: the case study of the Roman amphitheatre “Palais-Gallien” in Bordeaux. Radiation Measurements 72: 100-110.
  • Ustaömer T, Robertson AHF (1996). Paleotethyan tectonic evolution of the north Tethyan margin in the central Pontides, N Turkey. In: Erler A, Ercan T, Bingol E, Orcen S. (editors). Proceedings of the International Symposium on the Geology of the Black Sea Region. Ankara, Turkey: General Directorate of Mineral Reasearch and Exploration and Chamber of Geological Engineers, pp. 24-33.
  • Vialon P, Ruhland M, Grolier J (1976). Eléments de tectonique analytique. 1 st ed. Paris, France: Masson.
  • Westaway R (1994). Present-day kinematics of the Middle East and eastern Mediterranean. Journal of Geophysical Research 99: 12071-12090.
  • Wilcox RE, Harding TP, Seely DR (1973). Basic wrench tectonics. AAPG Bulletins 57: 74-96.
  • Wintle AG, Murray AS (2006). A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41: 369-391.
  • Yaltırak C, Sakınç M, Aksu AE, Hiscott RN, Galleb B et al. (2002). Late Pleistocene uplift history along the southwestern Marmara Sea determined from raised coastal deposits and global sealevel variation. Marine Geology 190: 283-305.
  • Yanchilina AG, Ryan WBF, McManus JF, Dimitrov P, Dimitrov D et al (2017). Compilation of geophysical, geochronological, and geochemical evidence indicates a rapid Mediterranean-derived submergence of the Black Sea’s shelf and subsequent substantial salinification in the early Holocene. Marine Geology 383: 14- 34.
  • Yanina TA (2012). Correlation of the Late Pleistocene paleogeographical events of the Caspian Sea and Russian Plain. Quaternary International 271: 120-129. doi: 10.1016/j. quaint.2012.06.003
  • Yanina TA (2013). Biostratigraphy of the middle and upper Pleistocene of the Caspian region. Quaternary International 284: 85-97.
  • Yanina TA (2014). The Ponto-Caspian region: environmental consequences of climate change during the Late Pleistocene. Quaternary International 345: 88-99.
  • Yanko-Hombach V, Gilbert AS, Panin N, Dolukhanov PM (2007). The Black Sea Flood Question: Changes in Coastline, Climate and Human Settlement. New York, NY, USA: Springer.
  • Yildirim C, Schildgen TF, Echtler H, Melnick D, Strecker MR (2011). Late Neogene and active orogenic uplift in the Central Pontides associated with the North Anatolian Fault: implications for the northern margin of the Central Anatolian Plateau, Turkey. Tectonics 30: TC5005.
  • Yildirim C, Melnick D, Ballato P, Schildgen TF, Echtler H et al. (2013). Diferential uplift along the northern margin of the Central Anatolian Plateau: inferences from marine terraces. Quaternary Science Reviews 81: 12-28.
  • Yılmaz Y, Tüysüz O, Yiğitbaş E, Genç ŞC, Şengör AMC (1997). Geology and tectonic evolution of the Pontides, In: Robinson AG (editor). Regional and Petroleum Geology of the Black Sea and Surrounding Regions (AAPG Memoir 68). Tulsa, OK, USA: The American Association of Petroleum Geologists, pp. 183-226.
  • Yilmaz BS, Guc AR, Gulibrahimoglu I, Yazici EN, Konak O et al. (1998). Trabzon İlinin Çevre Jeolojisi ve Doğal Kaynakları. Ankara, Turkey: Maden Tetkik ve Arama Genel Müdürlüğü (in Turkish).
  • Yilmaz C, Sen C, Sener S, Kandemir R, Karsli O et al. (2005). Trabzon Kiyi Bolgesinin Pliyo-Kuvaterner Stratigrafisi. In: Quaternary Symposium of Turkey; İstanbul, Turkey. pp. 111-117 (in Turkish).
  • Zastrozhnov A, Danukalova G, Golovachev M, Titov V, Osipova E et al (2020). Biostratigraphical investigations as a tool for palaeoenvironmental reconstruction of the Neopleistocene (Middle-Upper Pleistocene) at Kosika, Lower Volga, Russia. Quaternary International 540: 38-67. doi: 10.1016/j. quaint.2018.11.036
  • Zimmerman DW (1971). Thermoluminescent dating using fine grains from pottery. Archaeometry 13: 29-52. doi: 10.1111/ j.1475-4754.1971.tb00028.x
  • Zubakov VA, Kochegura VV (1974). The Late Pliocene and Quaternary. In: Zubakov VA (editor). Geochronology of the USSR. Vol 3. Leningrad, Russia: Nedra Publishers (in Russian).
  • Zubakov VA (1988). Climatostratigraphic scheme of the Black Sea Pleistocene and its correlation with the oxygen-isotope scale and glacial event. Quaternary Research 29:1-24.
Turkish Journal of Earth Sciences-Cover
  • ISSN: 1300-0985
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK