Late Holocene climatic oscillations traced by clay mineral assemblages and other palaeoceanographic proxies in Ria de Vigo (NW Spain)

This work aims to study recent climatic oscillations and their influence on sedimentation in the Ria de Vigo, a coastal embayment in Galicia, NW Spain. It is based on the study of clay mineral assemblages, in conjunction with other proxies (granulometric, geochemical, geochronological and microfaunal), in the core KSGX 24. A Benthic Foraminifera High Productivity (BFHP) proxy was used to determine changes in the flux of organic matter (OM) at the bottom of the study area. Total organic carbon (TOC) content is not a suitable proxy to estimate changes in the past supply of OM due to diagenetic processes. The sedimentation was finest in 3 sections: ~ 230-214 cm, ~ 185-73 cm and ~ 20-0 cm. These muddy sections are characterised, in general, by higher proportions of detrital minerals, concentrations of several chemical elements related to lithogenic sources and BFHP values. In addition, these sections are impoverished in carbonates, Ca, Sr and La when compared with the layers with the highest sand content. The clay mineral assemblage of the studied site, characterised by the dominance of illite, intermediate concentrations of kaolinite and minor amounts of smectite and chlorite, reveals the prevalence of a typical temperate humid climate in the last 3 ka BP, the estimated age for the core base. However, the quantities of illite and chlorite increase in the muddy layers. The characteristics of these muddy layers were interpreted as representing relatively cold climatic oscillations associated with the strengthening of northerly winds and the prevalence of an upwelling regime corresponding to well-known periods, such as the first cold period of the Upper Holocene (~ 2.9 ka cal BP), the Dark Ages (between ~ 2.2 - 1.2 ka cal BP) and the Little Ice Age (~ 0.6 ka cal BP).

Late Holocene climatic oscillations traced by clay mineral assemblages and other palaeoceanographic proxies in Ria de Vigo (NW Spain)

This work aims to study recent climatic oscillations and their influence on sedimentation in the Ria de Vigo, a coastal embayment in Galicia, NW Spain. It is based on the study of clay mineral assemblages, in conjunction with other proxies (granulometric, geochemical, geochronological and microfaunal), in the core KSGX 24. A Benthic Foraminifera High Productivity (BFHP) proxy was used to determine changes in the flux of organic matter (OM) at the bottom of the study area. Total organic carbon (TOC) content is not a suitable proxy to estimate changes in the past supply of OM due to diagenetic processes. The sedimentation was finest in 3 sections: ~ 230-214 cm, ~ 185-73 cm and ~ 20-0 cm. These muddy sections are characterised, in general, by higher proportions of detrital minerals, concentrations of several chemical elements related to lithogenic sources and BFHP values. In addition, these sections are impoverished in carbonates, Ca, Sr and La when compared with the layers with the highest sand content. The clay mineral assemblage of the studied site, characterised by the dominance of illite, intermediate concentrations of kaolinite and minor amounts of smectite and chlorite, reveals the prevalence of a typical temperate humid climate in the last 3 ka BP, the estimated age for the core base. However, the quantities of illite and chlorite increase in the muddy layers. The characteristics of these muddy layers were interpreted as representing relatively cold climatic oscillations associated with the strengthening of northerly winds and the prevalence of an upwelling regime corresponding to well-known periods, such as the first cold period of the Upper Holocene (~ 2.9 ka cal BP), the Dark Ages (between ~ 2.2 - 1.2 ka cal BP) and the Little Ice Age (~ 0.6 ka cal BP).

___

  • Abrantes, I. & Rocha, F. 2007. Sedimentary dynamics of the Aveiro Shelf (Portugal). Journal of Coastal Research SI 50, 1005–1009.
  • Álvarez, M.C., Flores, J.A., Sierro, F.J., Diz, P., Francés, G., Pelejero, C. & Grimalt, J. 2005. Millennial surface water dynamics in the Ría de Vigo during the last 3000 years as revealed by coccoliths and molecular biomarkers. Palaeogeography, Palaeoclimatology, Palaeoecology 218, 1–13.
  • Álvarez-Salgado, X.A., Doval, M.D. & Perez, F.F. 1999. Dissolved organic matter in shelf waters off the Ria de Vigo NW Iberian upwelling system. Journal of Marine Systems 18, 383–394.
  • Álvarez-Salgado, X.A., Rosón, G., Pérez, F.F., Figueiras, F.G. & Pazos, Y. 19 Nitrogen cycling in an estuarine upwelling system, the Ría de Arousa NW Spain: I. Short-time-scale patterns of hydrodynamic and biogeochemical circulation. Marine Ecology Progress Series 135, 259–273. Andrade, A., Rubio, B., Rey, D., Álvarez-Iglesias, P., Bernabeu, A.M. & Vilas, F. 2011. Palaeoclimatic changes during the last 3500 years inferred from diagenetical proxies in the sedimentary record of the Ria de Muros (NW Spain). Climate Research 48, 247–259.
  • Araşjo, M.F., Jouanneau, J.M., Valério, P., Barbosa, T., Gouveia, A., Weber, O., Oliveira, A., Rodrigues, A. & Dias, J.M.A. 2002. Geochemical tracers of northern Portuguese estuarine sediments on the shelf. Progress in Oceanography 52, 277–297.
  • Belzunce-Segarra, M.J., Wilson, M.J., Fraser, A.R., Lachowski, E. & Duthie, D.M.L. 2002. Clay mineralogy of Galician coastal and oceanic surface sediments: contributions from terrigenous and authigenic sources. Clay Minerals 37, 23–37.
  • Bender, M.L. & Heggie, D.T. 1984. Fate of organic carbon reaching the deep sea floor: a status report. Geochimica et Cosmochimica Acta 48, 977–986.
  • Bernárdez, P., González-Álvarez, R., Francés, G., Prego, R., Bárcena, M.A. & Romero, O.E. 2008. Late Holocene history of the rainfall in the NW Iberian peninsula - Evidence from a marine record. Journal of Marine Systems 72, 366–382.
  • Biscaye, P.E. 1965. Mineralogy and sedimentation of recent deepsea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society American Bulletin 76, 803–832.
  • Biscaye, P.F. 1964. Distinction between kaolinite and chlorite in recent sediments by X-ray diffraction. American Mineralogist 49, 1281– 12
  • Bischoff, J.L. & Cummins, K. 2001. Wisconsin glaciation of the Sierra Nevada (79,000–15,000 yr B.P.) as recorded by rock flour in sediments of Owens Lake, California. Quaternary Research 55, 14–
  • Bischoff, J.L., Menking, K.M., Fitts, J.P. & Fitzpatrick, J.A. 1997. Climatic oscillations 10,000–155,000 yr B.P. at Owens Lake, California reflected in glacial rock flour abundance and lake salinity in core OL- Quaternary Research 48, 313–325.
  • Blanton, O., Tenore, K.R., Castillejo, F., Atkinson, L.P., Schwing, F.P. & Lavin, A. 1987. The relationship of upwelling to mussel production in the rias on the Western coast of Spain. Journal of Marine Research 45, 495–511.
  • Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Houn, S., Jantschick, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G. & Ivy, S. 1992. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360, 245–249.
  • Castañón, L.G.C., Floor, P., Salinas, F.G., Hurtado, J.A., Navas, J.R. & Palenzuela, J.M.Z. 1981. Mapa Geológico de España (escala 1:50 000). Hoja de Vigo (4-11, 223). Instituto Geológico y Minero de España, Madrid.
  • Cermeño, P., Maraño, E., Valesca Pérez, V., Serret, P., Fernández, E. & Castro, C.G. 2006. Phytoplankton size structure and primary production in a highly dynamic coastal ecosystem (Ría de Vigo, NW-Spain): Seasonal and short-time scale variability. Estuarine, Coastal and Shelf Science 67, 251–266.
  • Chamley, H. 1989. Clay sedimentology. Springer-Verlag, New York.
  • Crespo, B.G., Figueiras, F.G., Porras, P. & Teixeira, I.G. 2006. Downwelling and dominance of autochthonous dinoflagellates in the NW Iberian margin: The example of the Ria de Vigo. Harmful Algae 5, 770–781.
  • Desprat, S., Sánchez-Goñi, M.F. & Loutre, M.F. 2003. Revealing climatic variability of the last three millennia in northwestern Iberia using pollen influx data. Earth and Planetary Science Letters 213, 63–78.
  • Diekmann, B., Hofmann, J. Henrich, R., Fütterer, D.K., Röhl, U. & Kuo-Yen, W. 2008. Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary. Marine Geology 255, 83–
  • Diz, P., Francés, G., Costas, S., Souto, C. & Alejo, I. 2004. Distribution of benthic foraminifera in coarse sediments, Ría de Vigo, NW Iberian Margin. Journal of Foraminiferal Research 34, 258–275.
  • Diz, P., Francés, G., Pelejero, C., Grimalt, J.O. & Vilas, F. 2002. The last 3000 years in the Ría de Vigo (NW Iberian Margin): climatic and hydrographic signals. The Holocene 12, 459–468.
  • Diz, P., Francés, G. & Rosón, G. 2006. Effects of contrasting upwelling– downwelling on benthic foraminiferal distribution in the Ría de Vigo (NW Spain). Journal of Marine Systems 60, 1–18.
  • Doval, M.D., Nogueira, E. & Pérez, F.F. 1998. Spatio-temporal variability of the thermohaline and biogeochemical properties and dissolved organic carbon in a coastal embayment affected by upwelling: the Ria de Vigo (NW Spain). Journal of Marine Systems 14, 135–150.
  • Drago, T., Freitas, C., Rocha, F., Moreno, J., Cachao, M., Naughton, F., Fradique, C., Araujo, F., Silveira, T., Oliveira, A., Cascalho, J. & Fatela, F. 2006. Paleoenvironmental evolution of estuarine systems during the last 14000 years - the case of Douro estuary (NW Portugal). Journal of Coastal Research, SI 39, 186–192.
  • Eby, G.N. 1973. Scandium geochemistry of the Oka Garbonatite Complex, Oka, Quebec. American Mineralogist 58, 819–825.
  • Ernst, S. & van der Zwaan, B. 2004. Effects of experimentally induced raised levels of organic flux and oxygen depletion on a continental slope benthic foraminiferal community. Deep Sea Research Part I, 51, 1709–1739.
  • Figueiras, F.G., Labarta, U. & Fernández Reiriz, M.J. 2002. Coastal upwelling, primary production and mussel growth in the Rias Baixas of Galicia. Hydrobiologia 484, 121–131.
  • Fişza, A., Macedo, M.E. & Guerreiro, M.R. 1982. Climatological space and time variation of the Portuguese coastal upwelling. Oceanologica Acta 5, 31–40.
  • Frondel, C. 1970. Scandium. In: Wedepohl, K.H. (ed), Handbook of Geochemistry. Springer-Verlag, Berlin.
  • Galhano, C., Rocha, F. & Gomes, C. 1999. Geostatistical analysis of the influence of textural, mineralogical and geochemical parameters on the geotechnical behaviour of the “Argilas de Aveiro” formation (Portugal). Clay Minerals 34, 109–116.
  • García-García, A., García-Gil, S. & Vilas, F. 2005. Quaternary evolution of the Ria de Vigo, Spain. Marine Geology 220, 153– 1
  • González-Álvarez, R., Bernárdez, P., Pena, L.D., Francés, G., Prego, R., Diz, P. & Vilas, F. 2005. Paleoclimatic evolution of the Galician continental shelf (NW of Spain) during the last 3000 years: from a storm regime to present conditions. Journal of Marine Systems 54, 245–260.
  • Griffin, J.J., Windom, H. & Goldberg, E.D. 1968. The distribution of clay minerals in the world oceans. Deep-Sea Research 15, 433– 4
  • Haynes, R. & Barton, E.D. 1990. A poleward flow along the Atlantic coast of the Iberian Peninsula. Journal of Geophysical Research 95, 11425–11441.
  • Hurtado, J.A., Salinas, F.G., Dones, V.P., Navas, J.R., Menéndez, J.B.S., Castañón, L.G.C. & Floor, P. 1981. Mapa Geológico de España (escala 1:50 000). Hoja de Tuy (4-12, 261). Instituto Geológico y Minero de España, Madrid.
  • Jason, R., Price, J.R., Velbel, M.A. & Patino, L.C. 2005. Rates and time scales of clay-mineral formation by weathering in saprolitic regoliths of the southern Appalachians from geochemical mass balance. Bulletin of the Geological Society of America 117, 783–794.
  • Jouanneau, J.M., Weber, O., Drago, T., Rodrigues, A., Oliveira, A., Dias, J.M.A., Garcia, C., Schmidt, S. & Reyss, J.L. 2002. Recent sedimentation and sedimentary budgets on the western Iberian shelf. Progress in Oceanography 52, 261–275.
  • Julivert, M., Martinez, F.J. & Ribeiro, A. 1980. The Iberian segment of the European Hercynian Foldbelt, in Geology of Europe from Precambrian to the Post-Hercynian Sedimentary Basins. Bureau de Recherches Géologiques et Minières Société Géologique du Nord, 132–158.
  • Loring, D.H. 1990. Lithium — a new approach for the granulometric normalization of trace metal data. Marine Chemistry 29, 155– 1
  • Loring, D.H. 1991. Normalization of heavy-metal data from estuarine and coastal sediments. ICES Journal of Marine Science 48, 101–
  • Loubere, P. & Fariduddin, M. 1999. Benthic Foraminifera and the flux of organic carbon to the seabed. In: Sen Gupta, B.K. (ed), Modern Foraminifera, Kluwer Academic Publishers, Dordrecht/Boston/London, 181–199.
  • Martínez-Ansemil, E. & Membiela, P. 1992. The low mineralized and fast turnover watercourses of Galicia. Limnetica 8, 125–130.
  • Martins, V., Dubert, J., Jouanneau, J.M., Weber, O., Silva, E.F., Patinha, C., Dias, J.M.A. & Rocha, F. 2007. A multiproxy approach of the Holocene evolution of shelf–slope circulation on the NW Iberian Continental Shelf. Marine Geology 239, 1–18.
  • Martins, V., Jouanneau, J.M., Weber, O. & Rocha, F. 2006a. Tracing the late Holocene evolution of the NW Iberian upwelling system. Marine Micropaleontology 59, 35–55.
  • Martins, V., Patinha, C., Ferreira da Silva, E., Jouanneau, J.M., Weber, O. & Rocha, F. 2006b. Holocene record of productivity in the NW Iberian continental shelf. Journal of Geochemical Exploration 88, 408–411.
  • Martins, V., Rocha, F., Jouanneau, J., Weber, O., Gomes, C., Dias, J. & Gomes, V. 2005. Geochemical, textural, mineralogical and micropaleontological data used for climatic reconstruction during the Holocene in the Galicia sector of the Iberian Continental Margin. Ciências Marinas 31, 293–307.
  • Menking, K.M. 1997. Climatic signals in clay mineralogy and grainsize variations in Owens Lake core OL-92, southeast California. GSA Special Papers 317, 25–36.
  • Millot, G. 1979. Geology of Clays. Springer-Verlag, Berlin.
  • Mohamed, K., Rey, D., Rubio, B., Dekkers, M., Roberts, A.P. & Vilas, F. 20 Onshore–offshore gradient in reductive early diagenesis in coastal marine sediments of the Ria de Vigo, Northwest Iberian Peninsula. Continental Shelf Research 31, 433–447. Mouriño, C. & Fraga, F. 1985. Determinación de nitratos en agua de mar. Investigaciones Pesqueras 49, 81–96.
  • Norman, J.C. & Haskin, L.A. 1968. The geochemistry of Sc: A comparison to the rare earths and Fe. Geochimica et Cosmochimica Acta 32, 93–108.
  • Oliveira, A., Rocha, F., Rodrigues, A., Jouanneau, J.M., Dias, A., Weber, O. & Gomes, C. 2002. Clay minerals from the sedimentary cover from Northwest Iberian shelf. Progress in Oceanography 52, 233–247.
  • Peliz, Á., Rosa, T.L., Miguel, A., Santos, P. & Pissarra, J.L. 2002. Fronts, jets, and counter-flows in the Western Iberian upwelling system. Journal of Marine Systems 35, 61–77.
  • Pérez-Arlucea, M., Mendez, G., Clemente, F., Nombela, M., Rubio, B. & Filgueira, M. 2005. Hydrology, sediment yield, erosion and sedimentation rates in the estuarine environment of the Ria de Vigo, Galicia, Spain. Journal of Marine Systems 54, 209–226.
  • Pondal, P.I., Vegas, R. & Marcos, A. 1982. Notas explicativas al mapa geológico do Macizo Hespérico, escala 1:500 000. Publicacións da Área de Xeoloxía e Minería do Seminario de Estudos Galegos.
  • PO-WAVES Group. 1994. Final report of sub-project A, Wind wave climatology of the Portuguese coast. Instituto Hidrográfico, REL. FT.OM 5/94.
  • Prego, R. 1993. General aspects of carbon biogeochemistry in the Ría de Vigo, northwestern Spain. Geochimica et Cosmochimica Acta 57, 2041–2052.
  • Prego, R. & Fraga, F., 1992. A simple model to calculate the residual flows in a Spanish ria. Hydrographic consequences in the ria of Vigo. Estuarine, Coastal and Shelf Science 34, 603–615.
  • Rubio, B., Nombela, M.A. & Vilas, F. 2000. Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Marine Pollution Bulletin 40, 968–980.
  • Saleh, G.M. 2007. Geology and rare-earth element geochemistry of highly evolved, molybdenite-bearing granitic plutons, Southeastern Desert, Egypt. Chinese Journal of Geochemistry 26, 333–344.
  • Soares, A.M.M. & Dias, J.M.A. 2007. Reservoir effect of coastal waters off Western and Northwestern Galicia. Radiocarbon 49, 925–936.
  • Stuiver, M. & Reimer, P.J. 1993. Extended 14
  • C data base and revised CALIB 0 14 C age calibration program. Radiocarbon 35, 215– 2 Tenore, K.R., Alonso-Noval, M., Álvarez-Ossorio, M., Atkinson, L.P., Cabanas, J.M., Cal, R.M., Campos, H.J., Castillejo, F., Chesney, E.J., Gonzalez, N., Hanson, R.B., McClain, C.R., Miranda, A., Roman, M.R., Sánchez, J., Santiago, G., Valdés, L., Varela, M. & Yoder, J. 1995. Fisheries and oceanography off Galicia, NW Spain: mesoscale spatial and temporal changes in physical processes and resultant patterns of biological productivity. Journal of Geophysical Research 100 (C6), 10943–10966.
  • Thamban, M., Purnachandra Rao, V. & Schneider, R.R. 2002. Reconstruction of late Quaternary monsoon oscillations based on clay mineral proxies using sediment cores from the western margin of India. Marine Geology 186, 527–539.
  • Tilling, R., Greenland, P.L. & Gottfried, D. 1969. Distribution of scandium between coexisting biotite and hornblende in igneous rocks. Geological Society of America Bulletin 80, 661–658.
  • Tilstone, G.H., Figueiras, F.G., Fermin, E.G. & Arbones, B. 1999. Significance of nanophytoplankton photosynthesis and primary production in a coastal upwelling system (Ría de Vigo, NW Spain). Marine Ecology Progress Series 183, 13–27.
  • Tilstone, G.H., Figueiras, F.G. & Fraga, F. 1994. Upwelling-downwelling sequences in the generation of red tides in a coastal upwelling system. Marine Ecology Progress Series 112, 241–253.
  • Tilstone, G.H., Míguez, B.M., Figueiras, F.G. & Fermín, E.G. 2000. Diatom dynamics in a coastal ecosystem affected by upwelling: coupling between species succession, circulation and biogeochemical processes. Marine Ecology Progress Series 205, 23–
  • Torre, E. 1958. Estado actual del conocimiento de las Rías gallegas. In: Otero Pedrayo, R. (ed), Homenaje a Otero Pedrayo. Galaxia, Vigo, 237–250.
  • Van Geel, B., Buurman, J. & Waterbolk, H.T. 1996. Archaeological and palaeoecological indications of an abrupt climate change in the Netherlands, and evidence for climatological teleconnections around 2650 BP. Journal of Quaternary Science 11, 451–460.
  • Vidal Romani, J.R. 1984. A orixe das Rías Galegas. Estado da cuestion (1986-1983). Cuadernos da Area de Ciencias Marinas de Estudos Galegos 1, 13–25.
  • Vidinha, J., Rocha, F., Andrade, C., Gomes, C., & Freitas, C., 2007. Clay minerals - a mineralogical tool to distinguish beach from dune sediments. Journal of Coastal Research, SI 50, 216–220.
  • Vilas, F., Bernabeu, A.M. & Méndez, G., 2005. Sediment distribution pattern in the Rias Baixas (NW Spain): main facies and hydrodynamic dependence. Journal of Marine Systems 54, 261–276.
  • Vitorino, J., Oliveira, A., Jouanneau, J.M. & Drago, T., 2002. Winter dynamics on the northern Portuguese shelf. Part 1: physical processes. Progress in Oceanography 52, 129–153.
  • Windom, H.L. 1976. Lithogeneous material in marine sediments. In: Riley, J.P. & Chester, R. (eds), Chemical Oceanography. Academic Press, London, 103–135.
  • Wooster, W.S., Bakun, A. & McLain, D.R. 1976. The seasonal upwelling cycle along the eastern boundary of the North Atlantic. Journal of Marine Research 34, 131–141.
  • Yuretich, R. & Ervin, C. 2002. Clay minerals as paleoenvironmental indicators in two large lakes of the African rift valleys: Lake Malawi and Lake Turkana. In: Renaut, R.W. & Ashley, G.M. (eds.), Sedimentation in Continental Rifts 73, 221–232.
  • Yuretich, R., Melles, M., Sarata, B. & Grobe, H. 1999. Clay minerals in the sediments of Lake Baikal; a useful climate proxy. Journal of Sedimentary Research 69, 588–596.
Turkish Journal of Earth Sciences-Cover
  • ISSN: 1300-0985
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Multiproxy evidence of Mid-Pleistocene dry climates observed in calcretes in Central Turkey

Ceren KÜÇÜKUYSAL, Asuman TÜRKMENOĞLU GÜNAL, Selim KAPUR

Stress features in Terra Rossa soil under traditional olive cultivation: a micromorphological and mineralogical characterization

Salvatore MADRAU, Claudio ZUCCA, İhsan AKŞİT, Valeria FIORI

Late Holocene climatic oscillations traced by clay mineral assemblages and other palaeoceanographic proxies in Ria de Vigo (NW Spain)

Virgínia MARTINS, Fernando ROCHA, Cristina SEQUEIRA, Paula MARTINS, José SANTOS

The key role of micromorphology in studies of the genesis of clay minerals and their associations in soils and its relevance to advances in the philosophy of soil science

Gordon Jock CHURCHMAN

Revisiting the genesis of red Mediterranean soils

Nicolas FEDOROFF, Marie-Agnès COURTY

Multi-proxy evidences of Mid-Pleistocene dry climates observed on calcretes in Central Turkey

Multiproxy Evidence Of Mid-pleistocene D TURKEY

Genesis of the hydrothermal Karaçayır kaolinite deposit in Miocene volcanics and Palaeozoic metamorphic rocks of the Uşak-Güre Basin, western Turkey

Selahattin KADİR, Hülya ERKOYUN

Clay mineralogy of red clay deposits from the central Carpathian Basin (Hungary): implications for Plio-Pleistocene chemical weathering and palaeoclimate

János KOVÁCS, Béla RAUCSIK, Andrea VARGA, Gábor ÚJVÁRI, György VARGA, Franz OTTNER

Geology of Late Miocene clayey sediments and distribution of palaeosol clay minerals in the north-eastern part of the Cappadocian Volcanic Province (Araplı-Erdemli), central Anatolia, Turkey

Selahattin KADİR, Ali GÜREL, Hülya SENEM, Tacit KÜLAH