Improved composition of Hawaiian basalt BHVO-1 from the application of two new and three conventional recursive discordancy tests

Improved composition of Hawaiian basalt BHVO-1 from the application of two new and three conventional recursive discordancy tests

In order to establish the best statistical procedure for estimating improved compositional data in geochemical referencematerials for quality control purposes, we evaluated the test performance criterion ( π D|C ) and swamping ( π swamp ) and masking ( π mask )effects of 30 conventional and 32 new discordancy tests for normal distributions from central tendency slippage δ = 2 10, number ofcontaminants E = 1 4, and sample sizesn= 10, 20, 30, 40, 60, and 80. Critical values or percentage points required for 44 test variantswere generated through precise and accurate Monte Carlo simulations for sample sizesn min (1)100. The recursive tests showed overall thehighest performance with the lowest swamping and masking effects. This performance was followed by Grubbs and robust discordancytests; however, both types of tests have significant swamping and masking effects. The Dixon tests showed by far the lowest performancewith the highest masking effects. These results have implications for the statistical analysis of experimental data in most science andengineering fields. As a novel approach, we show the application of three conventional and two new recursive tests to an internationalgeochemical reference material (Hawaiian basalt BHVO-1) and report new improved concentration data whose quality is superior to allliterature compositions proposed for this standard. The elements with improved compositional data include all 10 major elements fromSiO 2to P 2 O 5 , 14 rare earth elements from La to Lu, and 42 (out of 45) other trace elements. Furthermore, the importance of larger samplesizes inferred from the simulations is clearly documented in the higher quality of compositional data for BHVO-1.

___

  • Abbey S (1996). Application of the five-mode method to three GIT- IWG rock reference samples. Geostand Newslett 20: 29-40.
  • Abbey S, Meeds RA, Belanger PG (1979). Reference samples of rocks - the search for “best values”. Geostand Newslett 3: 121-133.
  • Aitchison J (1986). The Statistical Analysis of Compositional Data. London, UK: Chapman and Hall.
  • Balaram V, Anjaiah KV, Reddy MRP (1995). Comparative study on the trace and rare earth element analysis of an Indian polymetallic nodule reference sample by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Analyst 120: 1401-1406.
  • Barnett V, Lewis T (1994). Outliers in Statistical Data. 3rd ed. Chichester, UK: John Wiley and Sons.
  • Daszykowski M, Kaczmarek K, Heyden YV, Walczak B (2007). Robust statistics in data analysis — A review: Basic concepts. Chemom Intell Lab Syst 85: 203-219.
  • Doornik JA (2005). An Improved Ziggurat Method to Generate Normal Random Samples. Oxford, UK: University of Oxford.
  • Egozcue, JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C (2003). Isometric logratio transformations for compositional data analysis. Math Geol 35: 279-300.
  • Flanagan FJ (1973). 1972 values for international geochemical reference samples. Geochim Cosmochim Acta 37: 1189-1200.
  • Flanagan FJ (1976). Descriptions and Analysis of Eight New USGS Rock Standards. U.S. Geological Survey Professional Paper 840. Reston, VA, USA: USGS.
  • Gladney ES, Jones EA, Nickell EJ, Roelandts I (1992). 1988 compilation of elemental concentration data for USGS AGV-1, GSP-1 and G-2. Geostand Newslett 16: 111-300.
  • Gladney ES, Roelandts I (1988). 1987 compilation of elemental concentration data for USGS BHVO-1, MAG-1, QLO-1, RGM- 1, SCo-1, SDC-1, SGR-1, and STM-1. Geostand Newslett 12: 253-262.
  • Gladney ES, Roelandts I (1990). 1988 compilation of elemental concentration data for USGS geochemical exploration reference materials GXR-1 to GXR-6. Geostand Newslett 14: 21-118.
  • Govindaraju K (1984). 1984 compilation of working values for 170 international reference samples of mainly silicate rocks and minerals: main text and tables. Geostand Newslett 8: 3-16.
  • Govindaraju K (1987). 1987 compilation report on Ailsa Craig Granite AC-E with the participation of 128 GIT-IWG laboratories. Geostand Newslett 11: 203-255.
  • Govindaraju K (1995). 1995 working values with confidence limits for twenty-six CRPG, ANRT and IWG-GIT geostandards. Geostand Newslett 19: 1-32.
  • Govindaraju K, Potts PJ, Webb PC, Watson JS (1994). 1994 report on Whin Sill dolerite WS-E from England and Pitscurrie microgabbro PM-S from Scotland: assessment by one hundred and four international laboratories. Geostand Newslett 18: 211-300.
  • Guevara M, Verma SP, Velasco-Tapia F, Lozano-Santa Cruz R, Girón P (2005). Comparison of linear regression models for quantitative geochemical analysis: an example using x-ray fluorescence spectrometry. Geostand Geoanal Res 29: 271-284.
  • Hayes K, Kinsella T (2003). Spurious and non-spurious power in performance criteria for tests of discordancy. Statistician 52: 69-82.
  • Jochum KP, Nohl U (2008). Reference materials in geochemistry and environmental research and the GeoReM database. Chem Geol 253: 50-53.
  • Jochum KP, Weis U, Schwager B, Stoll B, Wilson SA, Haug GH, Andreae MO, Enzweiler H (2016). Reference values following ISO guidelines for frequently requested rock reference materials. Geostand Geoanal Res 40: 333-350.
  • Johnson WM (1991). Use of geochemical reference materials in a quality control/quality assurance program. Geostand Newslett 15: 23-31.
  • Kalantar AH (1990). Weighted least squares evaluation of slope from data having errors in both axes. Trends Anal Chem 9: 149-151. Kane JS (1991). Quality control and reference sample data bases. Geostand Newslett 15: 33-42.
  • Marroquín-Guerra SG, Velasco-Tapia F, Díaz-González L (2009). Evaluación estadística de Materiales de Referencia Geoquímica del Centre de Recherches Pétrographiques et Géochimiques (Francia) aplicando un esquema de detección y eliminación de valores desviados. Rev Mex Cienc Geol 26: 530-542 (in Spanish).
  • Marsaglia G, Bray TA (1964). A convenient method for generating normal variables. SIAM Rev 6: 260-264.
  • Marsaglia G, Tsang WW (2000). The ziggurat method for generating random variables. J Geol Soc London 5: 1-7.
  • Miller JN, Miller JC (2010). Statistics and Chemometrics for Analytical Chemistry. 6th ed. Essex; UK: Pearson Prentice Hall.
  • Namiesnik J, Zygmunt B (1999). Role of reference materials in analysis of environmental pollutants. Sci Tot Environ 218: 243- 257.
  • Pandarinath K (2009). Evaluation of geochemical sedimentary reference materials of the Geological Survey of Japan (GSJ) by an objective outlier rejection statistical method. Rev Mex Cienc Geol 26: 638-646.
  • Quevauviller P, Benoliel MJ, Andersen K, Merry J (1999). New certified reference materials for the quality control of groundwater monitoring. Trends Anal Chem 18: 376-383.
  • Tellinghuisen J (2007). Weighted least-squares in calibration: what difference does it make? Analyst 132: 536-543.
  • Thomas DB, Luk W, Leong PH, Villasenor JD (2007). Gaussian random number generators. ACM Comput Surv 39: 11.
  • Thompson M, Potts PJ, Kane JS, Wilson S (2000). GeoPT5. An international proficiency test for analytical geochemistry laboratories - report on round 5. Geostand Geoanal Res 24: E1-E28.
  • Velasco-Tapia FM, Guevara M, Verma SP (2001). Evaluation of concentration data in geochemical reference materials. Chem Erde 61: 69-91.
  • Verma SP (1997). Sixteen statistical tests for outlier detection and rejection in evaluation of international geochemical reference materials: example of microgabbro PM-S. Geostand Geoanal Res 21: 59-75.
  • Verma SP (1998). Improved concentration data in two international geochemical reference materials (USGS basalt BIR-1 and GSJ peridotite JP-1) by outlier rejection. Geofís Int 37: 215-250.
  • Verma SP (2005). Basic Statistics for Handling of Experimental Data: Application in Geochemistry (Geochemometrics). Mexico City, Mexico: Universidad Nacional Autónoma de México (in Spanish).
  • Verma SP (2012). Geochemometrics. Rev Mex Cienc Geol 29: 276- 298.
  • Verma SP (2016). Statistical Analysis of Compositional Data. Mexico City, Mexico: Universidad Nacional Autónoma de México (in Spanish).
  • Verma SP, Cruz-Huicochea R, Díaz-González L (2013a). Univariate data analysis system: deciphering mean compositions of island and continental arc magmas, and influence of underlying crust. Int Geol Rev 55: 1922-1940.
  • Verma SP, Díaz-González L, Pérez-Garza JA, Rosales-Rivera M (2016a). Quality control in geochemistry from a comparison of four central tendency and five dispersion estimators and example of a geochemical reference material. Arab J Geosci 9: 740.
  • Verma SP, Díaz-González L, Pérez-Garza JA, Rosales-Rivera M (2017a). Erratum to: Quality control in geochemistry from a comparison of four central tendency and five dispersion estimators and example of a geochemical reference material. Arab J Geosci 10: 24.
  • Verma SP, Díaz-González L, Rosales-Rivera M, Quiroz-Ruiz A (2014). Comparative performance of four single extreme outlier discordancy tests from Monte Carlo simulations. Sci World J 2014: 746451.
  • Verma SP, Orduña-Galván LJ, Guevara M (1998). SIPVADE: A new computer programme with seventeen statistical tests for outlier detection in evaluation of international geochemical reference materials and its application to Whin Sill dolerite WS-E from England and Soil-5 from Peru. Geostand Geoanal Res 22: 209- 234.
  • Verma SP, Pandarinath K, Verma SK, Agrawal S (2013b). Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks. Lithos 168-169: 113-123.
  • Verma SP, Quiroz-Ruiz A (2008). Critical values for 33 discordancy test variants for outliers in normal samples of very large sizes from 1,000 to 30,000 and evaluation of different regression models for the interpolation of critical values. Rev Mex Cienc Geol 25: 369-381.
  • Verma SP, Rivera-Gómez MA, Díaz-González L, Pandarinath K, Amezcua-Valdez A, Rosales-Rivera M, Verma SK, Quiroz- Ruiz A, Armstrong-Altrin JA (2017b). Multidimensional classification of magma types for altered igneous rocks and application to their tectonomagmatic discrimination and igneous provenance of siliciclastic sediments. Lithos 278-281: 321-330.
  • Verma SP, Rivera-Gómez MA, Díaz-González L, Quiroz-Ruiz A (2016b). Log-ratio transformed major-element based multidimensional classification for altered High-Mg igneous rocks. Geochem Geophy Geosy 17: 4955-4972.
  • Villeneuve JP, de Mora S, Cattini C (2004). Determination of organochlorinated compounds and petroleum in fish- homogenate sample IAEA-406: results from a worldwide interlaboratory study. Trends Anal Chem 23: 501-510