Feather-like hornblende aggregates in the phyllites from the southern Sanandaj Sirjan zone, Iran; their origin and mode of formation
Feather-like hornblende aggregates in the phyllites from the southern Sanandaj Sirjan zone, Iran; their origin and mode of formation
Several outcrops of spectacular feather-like hornblende aggregates occur in the phyllites of the Gol-e-Gohar complex (southeastof Iran) and form special Garbenschiefer rock types. The Gol-e-Gohar complex, as a part of the southern Sanandaj Sirjan metamorphiczone, contains a succession of metabasites, phyllites, and slates intruded by dioritic intrusions. There are two types of hornblendesin the phyllites; the first one is concentrated around the fractures and the second one is randomly distributed in the rocks and formsradial feather-like hornblende aggregates. Petrographical and chemical characteristics of these two shapes of hornblendes are the same,except the latter is developed parallel to the foliation planes. The hornblendes occur as unstrained needle-shaped porphyroblasts withoriented quartz and feldspar inclusions as well as polygonal grains in the matrix with mosaic texture, which implies the matrix hasbeen recrystallized. On the basis of field observations, petrography, and chemical compositions of the hornblendes, we inferred that theGarbenschiefer phyllites formed during hydrothermal metamorphism in association with penetration of hot fluids. The compositionsof hornblende aggregates are similar to those formed in hydrothermal systems and differ from regional and thermal metamorphicamphiboles. All evidence shows that, in the studied area, ascending of dioritic intrusions increases fluid temperature, the hot fluidsleach some elements from the metabasites, and finally the enriched fluids flow upward via the fractures. In the upper levels, the fluidspenetrate into the phyllites along their foliation planes and, with a decrease in temperature and pressure, they crystallize hornblendeaggregates under static hydrothermal conditions.
___
- Agard P, Omrani J, Jolivet L, Mouthereau F (2005). Convergence history across Zagros (Iran): Constraints form collisional and earlier deformation. Int J Earth Sci 94: 401-419. Agard P, Omrani J, Jolivet L, Whitechurch H, Vrielynck B, Spakmam W, Monie P, Meyer B, Wortel R (2011). Zagros Orogeny: a subduction-dominated. Geol Mag 148: 692-725
- FATEHI et al. / Turkish J Earth Sci Alirezaei S, Hassanzadeh J (2012). Geochemistry and zircon geochronology of the Permian A-type Hasanrobat granite, SanandajSirjan belt: A new record of the Gondwana break-up in Iran. Lithos 151: 122-134. Alt JC (1999). Very low-grade hydrothermal metamorphism of basic igneous rocks. In: Frey M, Robinson D, editors. Low-grade Metamorphism. Oxford, UK: Blackwell Science, pp. 169-201. Arfania R, Shahriari S (2009). Role of southern Sanandaj-Sirjan zone in the tectonic evolution of the Zagros orogenic belt, Iran. Isl Arc 18: 555-576. Azizi H, Najari M, Asahara Y, Catlos EJ, Shimizu M, Yamamoto K (2015). UPb zircon ages and geochemistry of Kangareh and Taghiabad mafic bodies in northern SanandajSirjan Zone, Iran: evidence for intra-oceanic arc and back-arc tectonic regime in Late Jurassic. Tectonophysics 660: 47-64. Bayati M, Esmaeily D, Maghdour-Mashhour R, Lic XH Stern RJ (2017). Geochemistry and petrogenesis of Kolah-Ghazi granitoids of Iran: insights into the Jurassic Sanandaj-Sirjan magmatic arc. Chem der Erde 77: 281-302. Berberian M, King GCP (1981). Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18: 210-265. Berger A, Stunitz H (1996). Deformation mechanisms and reaction of hornblende: examples from the Bergell tonalite (Central Alps). Tectonophysics 257: 149-174. Bevins RE, Robinson D (1994). A review of low grade metabasite parageneses. In: Hanquan W, Bai T, Yiqun L, editors. Very Low Grade Metamorphism: Mechanisms and Geological Applications. Beijing, China: The Seismological Press, pp. 1-8. Biermann C (1977). The formation of sheaf-like aggregates of hornblende in garbenschiefer from the central Scandinavian Caledonides. Tectonophysics 39: 487-499. Braud J (1987). La suture du Zagros au niveau de Kermanshah (Kurdistan iranien): Reconstitution palégéographique, evolution géodynamique, magmatique et structural. PhD, Université de Paris-Sud, Paris, France.
- Bucher K, Grapes R (2011). Petrogenesis of Metamorphic Rocks. Berlin, Germany: Springer-Verlag.
- Cathelineau M, Nieva D (1985). A chlorite solution geothermometer. The Los Azufres (Mexico) geothermal system. Contrib Mineral Petr 91: 235-244.
- Coombs DS (1961). Some recent work on the lower grades of metamorphism. Aust J Earth Sci 24: 203-215.
- Essaifi A, Capdevila R, Fourcade S, Lagarde JL, Ballèver M, Marigna CH (2004). Hydrothermal alteration, fluid flow and volume change in shear zones: the layered maficultramafic Kettara intrusion (Jebilet Massif, Variscan belt, Morocco). J Metamorph Geol 22: 25-43.
- Faryad SW, Hoinkes G (1999). Two contrasting mineral assemblages in the Meliata blueschists, Western Carpathians, Slovakia. Mineral Mag 63: 489-501.
- Furnes H, Rosing M, Dilek Y, Wit M (2009). Isua supracrustal belt (Greenland)-A vestige of a 3.8 Ga suprasubduction zone ophiolite and the implications for Archean geology. Lithos 113: 115-132.
- Graessner T, Schenk V (1999). Low-pressure metamorphism of Paleozoic pelites in the Aspromonte, Southern Calabria: constraints for the thermal evolution in the Calabrian crustal cross-section during the Hercynian orogeny. J Metamorph Geol 17: 157-172.
- Hacker BR, Abers GA, Peacock SM (2003). Subduction factory, 1, Theoretical mineralogy, density, seismic wave speeds, and H 2 O content. J Geophys Res 108: 1-26.
- Hammarstrom JM, Zen EA (1986). Aluminum in hornblende: an empirical igneous geobarometer. Am Mineral 71: 1297-1313 .
- Hemley JJ, Montoya JW, Nigrini A, Vincent HA (1971). Some alteration products in the system CaO-Al 2 O 3 -SiO 2 -H 2 O. Society of Mining Geology. Japan, Special Issue 2: 58-63.
- Hey MH (1954). A new review of the chlorites. Mineral Mag 30: 277- 292.
- Holland T, Blundy J (1994). Nonideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petr 116: 433-447.
- Kelley DS, Malpas J (1996). Melt-fluid evolution in gabbroic rocks from the Hess Deep, Ocean Drilling Leg 147. In: Allan J, Gillis K, Mevel C, editors. Proceeding of the Ocean Drilling Program, Scientific Results. College Station, TX, USA: Ocean Drilling Program, pp. 213-226.
- Kirby SH, Kronenberg AK (1987). Rheology of the lithosphere selected topics. Rev Geophys 25: 1219-1244.
- Kretz R (1983). Symbols for rock forming minerals. Am Mineral 68: 277-279.
- Kruse R, Stunitz H (1999). Deformation mechanisms and phase distribution in mafic high-temperature mylonites from the Jotun Nappe, southern Norway. Tectonophysics 303: 223-249.
- Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG et al (1997).
- Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can Mineral 35: 219-246.
- Mahmoudi S, Corfu F, Masoudi F, Mehrabi B, Mohajjel M, (2011). UPb dating and emplacement history of granitoid plutons in the northern SanandajSirjan Zone, Iran. J Asian Earth Sci 41: 238-249.
- Mohajjel M, Baharifar A, Moinevaziri H, Nozaem R (2006). Deformation history, micro-structure and P-T-t path in ALS bearing schist, southeast Hamadan, Sanandaj-Sirjan Zone, Iran. J Geol Soc Iran 1: 11-19.
- Mohajjel M, Fergusson CL (2014). Jurassic to Cenozoic tectonics of the Zagros orogeny in the northwestern Iran. Int Geol Rev 53: 263-287.
- Mohajjel M, Fergusson CL (2000). Dextral transpression in late Cretaceous continental collision, Sanandaj-Sirjan zone, Western Iran. J Struct Geol 22: 1125-1139.
- Mohajjel M, Fergusson CL, Sahandi MR (2003). Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan zone, western Iran. J Asian Earth Sci 21: 397-412.
- Omrani J, Agard P, Whitechurch H, Benoit M, Prouteau G, Jolivet L (2008). Arc magmatism and subduction history beneath the Zagros mountains, Iran: a new report of adakites geodynamic consequences. Lithos 106: 380-398.
- Polat A, Hofmann AW, Rosing MT (2002). Boninite-like volcanic rocks in the 3.73.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem Geol 184: 231-254.
- Ranalli G, Murphy DC (1987). Rheological stratification of the lithosphere. Tectonophysics 132: 281-295.
- Robinson P, Spear FS, Schumacher JC, Laird J, Klein C, Evans BW, Doolan BL (1982). Phase relations of metamorphic amphiboles: natural occurrence and theory. In: Veblen DR, Ribbe PH editors. Amphiboles: Petrology and Experimental Phase Relations. Mineralogical Society of America Rev Mineral Geochem 9B: 1-228.
- Rose NM, Bird DK (1994). Hydrothermally altered dolerite dykes in East Greenland: implications for Ca-metasomatism of basaltic protoliths. Contrib Mineral Petr 116: 420-432.
- Sabzehei M, Navazi M, Azizan H, Roshan Ravan J, Nazemzadeh M (1997b). Geological map of Khabr, Scale 1/100000. Geol Surv Iran, Tehran, Iran.
- Sabzehei M, Navazi M, Eshraghi SA, Roshan Ravan J, Hamdi B, Seraj M (1997a). Geological map of Gol-e-Gohar, Scale 1/100000. Geol Surv Iran, Tehran, Iran.
- Schumacher JC (2007). Metamorphic amphiboles: composition and coexistence. Rev Mineral Geochem 67: 359-416.
- Sheikholeslami MR, Pique A, Mobayen P, Sabzehei M, Bellon H, Emami MH (2008). Tectono-metamorphic evolution of the Neyriz metamorphic complex, Quri-Kor-e-sefid area (Sanandaj-Sirjan zone, SW Iran). J Asian Earth Sci 31: 504-521.
- Sheikholeslami MR (2015). Deformations of Palaeozoic and Mesozoic rocks in southern Sirjan, SanandajSirjan Zone, Iran. J Asian Earth Sci 106: 130-149.
- Silantyev SA, Kostitsyn YA, Cherkashin DV, Dick HJB, Kelemen PB, Kononkova NN, Kornienko EM (2008). Magmatic and metamorphic evolution of the oceanic crust in the western flank of the MAR crest zone at 15°44 ʹ N: investigation of cores from sites 1275B and 1275D, JOIDES resolution Leg 209. J Petrol 16: 353-375.
- Springer RK, Day HW (2002). Hydrothermal amphibole in subgreenschist facies mafic rocks, western Sierra Nevada, California. Schweiz Miner Petrog 82: 341-354.
- Steffen K, Silverstone JS, Brearley A (2014). Episodic weakening and strengthening during synmetamorphic deformation in a deep- crustal shear zone in the Alps. Geol Soc London. Spec Publ 186: 141-156.
- Stocklin J (1968). Structural history and tectonics of Iran: a review. Am Assoc Petr Geol B 52: 1229-1258.
- Stokes MR, Wintsch RP, Southworth CS (2012). Deformation of amphibolites via dissolution-precipitation creep in the middle and lower crust. J Met Geol 30: 723-737.
- Streit JE, Cox SF (1998). Fluid infiltration and volume change during mid-crustal mylonitization of Proterozoic granite, King Island, Tasmania. J Met Geol 16: 197-212.
- Topus G (2006). Contact metamorphism around the Eocene Saraycık granodiorite, Eastern Pontides, Turkey. Turkish J Earth Sci 15: 75-94.
- Tullis J, Yund R, Farver J (1996). Deformation-enhanced fluid distribution in feldspar aggregates and implications for ductile shear zones. J Geol 24: 63-66