Depositional stages of the Eğribucak inner basin (terrestrial to marine evaporite and carbonate) from the Sivas Basin (Central Anatolia, Turkey)

Depositional stages of the Eğribucak inner basin (terrestrial to marine evaporite and carbonate) from the Sivas Basin (Central Anatolia, Turkey)

The Sivas Cenozoic Basin and coeval Central Anatolian basins such as Çankırı and Tuz Gölü are characterized by both marineand terrestrial sediments ranging in age from the Eocene to early Miocene. The evaporite regime here generally appeared during the latestage of Eocene transgression and persisted through the Oligocene time. However, marine-induced Oligocene evaporites are less knownbecause of less paleontological evidence and regional tectonics and salt diapirism that mostly caused the destruction of their originalstratigraphic positions. The Eğribucak area studied here, located about 25 km southeast of Sivas ,provides a well-stratified key sectionto shed light on the depositional history of the Oligocene marine evaporite (coastal lagoon or sabkha complex) and other associatedcarbonate and siliciclastic units. The Eğribucak succession has a thickness of approximately 400 m and rests on thick fluviatile sedimentscommencing with red beds (mudstone, sandstone, and gravelly sandstone), and upwards, terrestrial gypsums are present within the redunits as thin beds that are overlain by thick marine gypsum beds with rhythmical alternations of gray and green colored sandstone- marly limestone and limestone. The limestones alternating with the thick gypsum beds are rich in benthic foraminifers yielding aRupelian-Chattian age. At the top of the section evaporites disappeared and lagoon-type limestone turned into thick platform carbonatedated as Oligocene-early Miocene. The Eğribucak succession shows a wide variety of depositional environments ranging from terrestrialto restricted marine to open marine from bottom to top. The short periods of the lithological alternations from siliciclastic to carbonateand evaporite indicate that the evaporite environment was not consistent through the Oligocene period. This would be formed as amarginal evaporite environment, presumably a coastal lagoon/sabkha affected by seasonal variations with arid and humid periods aswell as eustatic sea-level changes. The Oligocene transgression culminated in the area with the deposition of platform-type carbonatesand it continued during the early Miocene.

___

  • Aktimur HT, Tekirli ME, Yurdakul ME (1990). Geology of the Sivas- Erzincan Tertiary Basin. Bulletin of Mineral Research and Exploration 111: 21-30.
  • Allan JR, Matthews RK (1982). Isotope signatures associated with early meteoric diagenesis. Sedimentology 29: 797-817.
  • Arribas J, Díaz-Molina M (1996). Saline deposits associated with fluvial fans, Late Oligocene-Early Miocene, Loranca Basin, Central Spain. In: Friend PF, Dabrio CJ, editors. Tertiary Basins of Spain. 1st ed. Cambridge, UK: Cambridge University Press, pp. 308-312.
  • Artan U, Sestini G (1971). Geology of the Beypınarı-Karababa area (Sivas Province). Bulletin of Mineral Research and Exploration 76: 80-97.
  • Aziz HA, Sanz-Rubio E, Calvo JP, Hilgen FJ, Krijgsman W (2003). Palaeoenvironmental reconstruction of a middle Miocene alluvial fan to cyclic shallow lacustrine depositional system in the Calatayud Basin (NE Spain). Sedimentology 50: 211-236.
  • Babel M (1999). History of sedimentation of the Nida Gypsum deposits (Middle Miocene, Carpathian Foredeep, southern Poland). Geol Q 43: 429-447.
  • Babel M (2005). Selenite-gypsum microbialite facies and sedimentary evolution of the Badenian evaporate basin of the northern Carpathian Foredeep. Acta Geol Pol 55: 187-210.
  • Bartholdy J, Aagaard T (2001). Storm surge effects on a back-barrier tidal flat of the Danish Wadden Sea. Geo-Mar Lett 20: 133-141.
  • Bathurst RGC (1966). Boring algae, micrite envelope and lithification of molluscan biosparites. Geol J 5: 15-32.
  • Batten Hender KL, Dix GR (2007). Facies development of a Late Ordovician mixed carbonate-siliciclastic ramp proximal to the developing Taconic orogen: Lourdes Formation, Newfoundland, Canada. Facies 54: 121-149.
  • Baykal F, Erentöz C (1966). 1/500.000 Ölçekli Türkiye Jeoloji Haritası, Sivas Paftası Açıklaması. MTA Ens. Yayınları. Ankara, Turkey: MTA (in Turkish).
  • Bingöl E (1989). Geological Map of Turkey (1:2.000.000 scale). Ankara, Turkey: Mineral Research and Exploration Institute of Turkey.
  • Blair TC, McPherson JG (1994). Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J Sediment Res 64: 450-489.
  • Bosence DWJ (1983). The occurrence and ecology of recent rhodoliths: a review. In: Peryt TM, editor. Coated Grains. Berlin, Germany: Springer-Verlag, pp. 225-242.
  • Bourquin S, Guillocheau F, Peron S (2009). Braided river within an arid alluvial plain (example from the Early Triassic, western German Basin): criteria of recognition and expression of stratigraphic cycles. Sedimentology 56: 2235-2264.
  • Bridge JS, Lunt IA (2006). Depositional models of braided rivers. In: Sambrook GS, editor. Braided Rivers. Ghent, Belgium: International Association of Sedimentology Special Publications, pp. 11-50.
  • Bull WB (1977). The alluvial fan environments. Prog Phys Geog 1: 222-270.
  • Callot JP, Ribes C, Kergaravat C, Bonnel C, Temiz H, Poisson A, Vrielynck B, Salel JF, Ringenbach JC (2014). Salt tectonics in the Sivas basin (Turkey): crossing salt walls and minibasins. B Soc Geol Fr 185: 33-42.
  • Calner M, Eriksson ME (2012). The record of microbially induced sedimentary structures (MISS) in the Swedish Palaeozoic. SEPM Special Publication 101: 29-35.
  • Cater JML, Hanna SS, Ries AC, Turner P (1991). Tertiary evolution of the Sivas Basin, central Turkey. Tectonophysics 195: 29-46.
  • Chaumillon E, Proust JN, Menier D, Weber N (2008). Incised-valley morphologies and sedimentary-fills within the inner shelf of the Bay of Biscay (France): a synthesis. J Marine Syst 72: 383-396.
  • Çiner A, Koşun E (1996). Stratigraphy and sedimentology of the Oligo-Miocene deposits in the south of Hafik (Sivas Basin). TAPG Bulletin 8: 16-34 (in Turkish with English abstract).
  • Çiner A, Koşun E, Deynoux M (2002). Fluvial, evaporitic and shallow marine facies architecture, depositional evolution and cyclicity in the Sivas Basin (Lower to Middle Miocene), Central Turkey. J Asian Earth Sci 21: 147-165.
  • Cody RD, Cody AM (1988). Gypsum nucleation and crystal morphology in analog saline terrestrial environments. J Sediment Petrol 58: 247-255.
  • Collinson JD (1986). Alluvial sediments. In: Reading HG, editor. Sedimentary Environments and Facies. 2nd ed. Oxford, UK: Blackwell Scientific Publications, pp. 20-62.
  • Çubuk Y (1994). Tectonostratigraphic studies on the Miocene sequences around Bogazören (Imranli) and Karayün (Hafik) (East of Sivas). PhD, Cumhuriyet University, Sivas, Turkey.
  • Çubuk Y, İnan S (1998). İmranlı ve Hafik güneyinde (Sivas) Miyosen havzasının stratigrafik ve tektonik özellikleri. Bulletin of Mineral Research and Exploration 120: 45-60 (in Turkish).
  • De Man E, Ivany L, Vandenberghe N (2004). Stable oxygen isotope record of the Eocene Oligocene transition in the southern North Sea Basin: positioning the Oil event. Neth J Geosci 83: 193-197.
  • Denisson RE, Kirkland DW, Evans RJ (1998). Using strontium isotopes to determine the age and origin of gypsum and anhydrite beds. J Geol 106: 1-17.
  • Dirik K, Güncüoğlu MC, Kozlu H (1999). Stratigraphy and pre- Miocene tectonic evolution of the southwestern part of the Sivas Basin, Central Anatolia, Turkey. Geol J 34: 303-319.
  • Dunham RJ (1962). Classification of carbonate rocks according to depositional textures. In: Ham WE, editor. Classification of Carbonate Rocks. AAPG Memoir. Tulsa, OK, USA: AAPG, pp. 108-121.
  • El-Hedeny MM (2005). Taphonomy and paleoecology of the Middle Miocene oysters from Wadi Sudr, Gulf of Suez. Revue de Paléobiologie 24: 719-733.
  • Filgueira R, Guyondet T, Comeau AL, Grant J (2014). Storm-induced changes in coastal geomorphology control estuarine secondary productivity. Earth’s Future 2: 1-13.
  • Flügel E (2004). Microfacies of Carbonate Rocks. Analysis, Interpretation and Application. New York, NY, USA: Springer- Verlag.
  • Folk RL (1959). Practical petrographic classification of limestones. Am Assoc Petr Geol B 43: 1-38.
  • Folk RL (1962). Spectral subdivision of limestones types. In: WE Ham, editör. Classification of carbonate rocks. Am Assoc Petr Geol B 1: 62-84.
  • Frascati A, Lanzoni S (2013). A mathematical model for meandering rivers with varying width. J Geophys Res 118: 1641-1657.
  • Gökçe A, Ceyhan F (1988). Stratigraphy, structural features and genesis of the Miocene gypsiferous sediments in the southeastern Sivas (Turkey). Cumhuriyet University Series-A Earth Sciences 1: 91- 113 (in Turkish with English abstract).
  • Gökçen SL, Kelling G (1985). Oligocene deposits of the Zara- Hafik region (Sivas, Central Turkey): evolution from storm- influenced shelf to evaporitic basin. Geol Rundsch 74: 139-153.
  • Gökten E (1983). Stratigraphy and geologic evolution of the area in the S-SE of Şarkışla (Sivas, Turkey). Bull Geol Soc Turkey 26: 167-176 (in Turkish with English abstract).
  • Gökten E (1993). Geology of the southern boundary of Sivas basin in the east of Ulaş Sivas-Central Anatolia): tectonic development related to the closure of Inner Tauride Ocean. TAPG Bulletin 5: 35-55.
  • Görür N, Oktay FY, Seymen I, Şengör AMC (1984). Paleotectonic evolution of the Tuz Gölü Basin complex, central Turkey. In: Dixon JE, Robertson AHF, editors. The Geological Evolution of the Eastern Mediterranean. London, UK: Geological Society of London Special Publications, pp. 81-96.
  • Guezou JC, Temiz H, Poisson A, Gürsöy H (1996). Tectonics of the Sivas Basin. The Neogene record of the Anatolian accretion along the Inner Tauride suture. Int Geol Rev 38: 901-925.
  • Gündoğan İ, Önal M, Depçi T (2005). Sedimentology, petrography, and diagenesis of Eocene-Oligocene evaporites: the Tuzhisar Formation, SW Sivas Basin, Turkey. J Asian Earth Sci 25: 791- 803.
  • Hakyemez A, Özgen-Erdem N, Kangal Ö (2016). Planktonic and benthic foraminiferal biostratigraphy of the Middle Eocene- Lower Miocene successions from the Sivas Basin (Central Anatolia, Turkey). Geol Carpath 67: 21-40.
  • Hanford CR (1991). Marginal marine halite: sabkhas and salinas. In: Melvin JL, editor. Evaporites, Petroleum and Mineral Resources. Amsterdam, the Netherlands: Elsevier, pp. 1-66.
  • Hayward AB (1985). Coastal alluvial fans (fan deltas) of the Gulf of Aqaba (Gulf of Eilat), Red Sea. Sediment Geol 43: 241-260.
  • Holliday DW (1970). The petrology of secondary gypsum rocks; a review. J Sediment Res 40: 734-744.
  • Hudson JD (1977). Stable isotopes and limestone lithification. Geol Soc London Memoir 133: 637-660.
  • Jacobsen SB, Kaufman AJ (1999). The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chem Geol 161: 37-57.
  • Jones HL, Hajek EA (2007). Characterizing avulsion stratigraphy in ancient alluvial deposits. Sediment Geol 202: 124-137.
  • Kakizaki Y, Weissert H, Hasegawa T, Ishikawa T, Matsuoka J, Kano A (2013). Strontium and carbon isotope stratigraphy of the Late Jurassic shallow marine limestone in western Palaeo-Pacific, northwest Borneo. J Asian Earth Sci 73: 57-67.
  • Kangal Ö, Poisson A, Temiz H, Karadenizli L, Varol B, Özden S, Sirel E (2005). Sivas havzasının Eosen dönemindeki jeolojik ve sedimantolojik evrimi. Proje no: 101Y039. Ankara, Turkey: TÜBİTAK (in Turkish).
  • Kangal Ö, Varol B (1999). Facies of basin margin in the Lower Miocene succession of Sivas Basin. TAPG Bulletin 11: 31-53 (in Turkish with English abstract).
  • Kendal AC, Harwood GM (1996). Marine evaporites: arid shorelines and basins. In: Reading HG, editor. Sedimentary Environments: Processes, Facies and Stratigraphy. Oxford, UK: Blackwell Science, pp. 281-324.
  • Kirby MX (2000). Paleoecological differences between Tertiary and Quaternary Crassostrea oysters, as revealed by stable isotope sclerochronology. Palaios 15: 132-141.
  • Kondolf GM, Hervè P (2003). Tools in Fluvial Geomorphology. London, UK: John Wiley & Sons Ltd.
  • Kurtman F (1961). Sivas Divriği arasındaki sahanın jeolojisi ve jipsli seri hakkında müşahedeler. Bulletin of Mineral Research and Exploration 56: 1-14 (in Turkish).
  • Kurtman F (1973). Sivas-Hafik-Zara-İmranlı bölgesinin jeolojik ve tektonik yapısı. Bulletin of Mineral Research and Exploration 80: 1-32 (in Turkish).
  • Magee JW (1991). Late Quaternary lacustrine, groundwater, aeolian pedogenic gypsum in the Prungle lakes, Southeastern Australia. Palaeogeogr Palaeocl 84: 3-42.
  • Manzi V, Lugli S, Roveri M, Schreiber BC (2009). A new facies model for the Upper Gypsum of Sicily (Italy): chronological and paleoenvironmental constraints for the Messinian salinity crisis in the Mediterranean. Sedimentology 56: 1937-1960.
  • McArthur JM, Howarth RJ, Bailey TR (2001). Strontium isotope stratigraphy: Lowess Version 3: best fit to the marine Sr- isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J Geol 109: 155-170.
  • McKenzie JA, Hodell DA, Mueller PA, Mueller DW (1988). Application of strontium isotopes to late Miocene-early Pliocene stratigraphy. Geology 16: 1022-1025.
  • Miall AD (1978). Lithofacies types and vertical profile models in braided river deposits: A summary. In: Miall AD, editor. Fluvial Sedimentology. Calgary, Canada: Canadian Society of Petroleum Geologists, pp. 597-604.
  • Miall AD (1996). The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology. Berlin, Germany: Springer-Verlag.
  • Miller KG, Feigenson MD, Wright JD, Clement BM (1991). Miocene isotope reference section, Deep Sea Drilling Project Site 608: an evaluation of isotope and biostratigraphic resolution. Paleoceanography 6: 33-52.
  • Milliman JD (1974). Marine Carbonates. Recent Sedimentary Carbonates Part 1. Heidelberg, German: Springer-Verlag.
  • Mutti M, John CM, Knoerich AC (2006). Chemostratigraphy in Miocene heterozoan carbonate settings: applications, limitations and perspectives. In: Pedley HM, Carannante G, editors. Cool-Water Carbonates: Depositional Systems and Palaeoenvironmental Controls. London, UK: Geological Society of London Special Publications, pp. 311-322.
  • Nebert K (1956). Zur stratigraphischen stellung der gipsserie im raum Zara-Imranli (Vilâyet Sivas). Bulletin of Mineral Research and Exploration 48: 79-85 (in German).
  • Ocakoğlu F (2001). Repetitive subtidal-to-coastal sabkha cycles from a Lower-Middle Miocene Marine Sequence, Eastern Sivas Basin. Turkish J Earth Sci 10: 17-34.
  • Okay AI, Tüysüz O (1999). Tethyan sutures of northern Turkey. Geol Soc London Special Publication 156: 475-515.
  • Oktay FY (1982). Stratigraphy and geological evolution of Ulukışla and its surroundings. Bull Geol Soc Turkey 25: 15-23 (in Turkish with English abstract).
  • Özgen-Erdem N, Kangal Ö, Varol B, Sirel E, Akkiraz S, Mayda S, Karadenizli L, Tunoglu C, Şen Ş (2013). Sivas Havzası’nın Oligosen-Miyosen Dönemi Stratigrafisi, Sedimantolojisi ve Havza Gelişimi. Proje no: 109Y041. Ankara, Turkey: TÜBİTAK (in Turkish).
  • Palmer MR, Helvacı C, Fallick AE (2004). Sulphur, sulphate oxygen and strontium isotope composition of Cenozoic Turkish evaporites. Chem Geol 209: 341-356.
  • Paytan A, Graya ET, Ma Z, Erhardt A, Faul K (2012). Application of sulphur isotopes for stratigraphic correlation. Isot Environ Healt S 48: 195-206.
  • Paz JDS, Rossetti DF (2006). Petrography of gypsum-bearing facies of the Codó Formation (Late Aptian), Northern Brazil. An Acad Bras Cienc 78: 557-572.
  • Peryt T (2008). Sedimentology of Badenian (Middle Miocene) gypsum in eastern Galicia, Podolia and Bukovina (West Ukraine). Sedimentology 43: 571-588.
  • Playford PE, Cockbain AE (1976). Modern algal stromatolites at Hamelin Pool, a hypersaline barred basin in Shark Bay, Western Australia. In: Walter MR, editor. Stromatolites. Amsterdam, the Netherlands: Elsevier, pp. 389-411.
  • Plint AG (1983). Sandy fluvial point-bar sediments from the middle Eocene of Dorset, England. In: Collinson JD, Lewin J, editors. Modern and Ancient Fluvial Systems. Oxford, UK: Blackwell Scientific Publications, pp. 355-368.
  • Poisson A, Guezou JC, Öztürk A, İnan S, Temiz H, Gürsoy H, Kavak KŞ, Özden S (1996). Tectonic setting and evolution of the Sivas Basin, Central Anatolia, Turkey. Int Geol Rev 38: 838-853.
  • Poisson A, Vrielynck B, Wernli R, Negri A, Bassetti MA, Büyükmeriç Y, Özer S, Guillou H, Kavak KS, Temiz H et al. (2015). Miocene transgression in the central and eastern parts of the Sivas Basin (Central Anatolia, Turkey) and the Cenozoic paleogeographical evolution. Int Geol Rev 105: 339-368.
  • Reading R (2000). Microbial carbonates: the geological record of calcified bacterial-algal mat and biofilms. Sedimentology 47: 179-214.
  • Reineck HE, Singh IE (1980). Depositional Sedimentary Environments. 2nd ed. New York, NY, USA: Springer-Verlag.
  • Reuter M, Piller WE, Brando M, Harzhauser M (2013). Correlating Mediterranean shallow water deposits with global Oligocene– Miocene stratigraphy and oceanic events. Global Planet Change 111: 226-236.
  • Ribes C, Kergaravat C, Bonnel C, Crumeyrolle P, Callot JP, Poisson A, Temiz H, Ringenbach JC (2015). Fluvial sedimentation in a salt-controlled mini-basin: stratal patterns and facies assemblages, Sivas basin, Turkey. Sedimentology 62: 1513- 1545.
  • Ringenbach JC, Salel JF, Kergaravat C, Ribes C, Bonnel C, Callot JP (2013). Salt tectonics in the Sivas basin, Turkey. Outstanding seismic analogues from outcrops. First Break 31: 93-101.
  • Ronen A (1980). The origin of the raised pelecypod beds along the Mediterranean coast of Israel. Paleorient 6: 165-172.
  • Rosen MR, JK Warren (1990). The origin and significance of groundwater-seepage gypsum from Bristol Dry Lake, California, USA. Sedimentology 37: 983-996.
  • Sarkar S, Chaudhuri AK (1992). Trace fossils in Middle to Late Triassic fluvial redbeds, Pranhita-Godavari valley, South India. Ichnos 2: 7-19.
  • Schreiber BC, Freidman GM, Decima A, Schreiber E (1976). Depositional environments of upper Miocene (Messinian) evaporite deposits of the Sicilian Basin. Sedimentology 23: 729-760.
  • Schreiber BC, Tabakh M (2000). Deposition and early alteration of evaporites. Sedimentology 45: 215-238.
  • Seal RR 2nd, Rye RO, Alpers CN (2000). Stable isotope systematics of sulfate minerals. Rev Mineral Geochem 40: 541-602.
  • Şengör AMC, Yılmaz Y (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75: 181-241.
  • Sherman CE, Fletcher CH, Rubin KH (1999). Marine and meteoric diagenesis of Pleistocene carbonates from a nearshore submarine terrace, Oahu, Hawaii. J Sediment Res 69: 1083- 1097.
  • Sirel E, Özgen-Erdem N, Kangal Ö (2013). Systematics and biostratigraphy of Oligocene (Rupelian-Early Chattian) foraminifera from lagoonal-very shallow water limestone in the eastern Sivas Basin (central Turkey). Geol Croat 66: 83-109.
  • Stchepinsky V (1939). Faune Miocene du vilayet Sivas (Turquie). Serie C, Monographie No 1. Ankara, Turkey: MTA (in French).
  • Stenzel HB (1971). Oysters. In: Moore RC, editor. Treatise on Invertebrate Paleontology. Part N. Mollusca 6, Bivalvia 3. Lawrence, KS, USA: Geological Society of America and University of Kansas Press, pp. N953-N1224.
  • Sümengen M, Terlemez I, Tayfun B, Gürbüz M, Ünay E, Özanar S, Tüfekçi K (1987). Şarkışla-Gemarek dolayı Tersiyer Havzasının stratigrafisi, sedimantolojisi ve morfolojisi. MTA Rapor No: 8118. Ankara, Turkey (in Turkish).
  • Sümengen M, Unay E, Sarac G, de Bruijn H, Terlemez I, Gürbüz M (1990). New rodent assemblages from Anatolia (Turkey). In: Lindsay EH, Falbusch V, Mein P, editors. European Neogene Mammal Chronology. New York, NY, USA: Plenum Press, pp. 61-72.
  • Tatar Y (1982). Yıldızeli (Sivas) kuzeyindeki Çamlıbel Dağlarının tektonik yapısı. Karadeniz Üniversitesi Yerbilimleri Dergisi 2: 1-20 (in Turkish).
  • Tekeli O, Varol B, Gökten E (1992). Sivas havzasının batı kesiminin jeolojisi (Tuzla Gölü – Tecer Dağı arası) TPAO Rapor No: 3178. Ankara, Turkey: TPAO (in Turkish).
  • Tekin E, Varol B, Ayan Z, Satir M (2002). Epigenetic origin of celestine deposits in the Tertiary Sivas Basin: new mineralogical and geochemical evidence. Neues Jb Miner Abh 7: 289-318.
  • Temiz H (1996). Tectonostratigraphy and thrust tectonics of the central and eastern parts of the Sivas Tertiary Basin, Turkey. Int Geol Rev 38: 957-971.
  • Testa G, Lugli S (2000). Gypsum–anhydrite transformations in Messinian evaporites of central Tuscany (Italy). Sediment Geol 130: 249-268.
  • Tunoğlu C, Tuncer A, Özgen N, Kangal Ö (2013). Oligocene Ostracoda from the Sivas Basin (Central Anatolia, Turkey). Naturalista Sicilia IV, XXXVII: 411-412.
  • Varela AN, Richiano S, Poiré DG (2011). Tsunami vs storm origin for shell bed deposits in a lagoon environment: an example from the Upper Cretaceous of southern Patagonia, Argentina. Lat Am J Sed Basin Analysis 18: 63-85.
  • Varol B, Atalar C (2016). Messinian evaporites in the Mesaoria Basin, North Cyprus: facies and environmental interpretations. Carbonate Evaporite (in press).
  • Veizer J (1983). Chemical diagenesis of carbonates: theory and application of trace element technique. In: Arthur MA, Anderson TF, Kaplan IR, Veizer J, Land LS, editors. Stable Isotopes in Sedimentary Geology 10. Tulsa, OK, USA: Society of Economic Paleontologists and Mineralogists Short Course Notes, pp. III-1-III-100.
  • Vermeij GJ (1972). Interspecific shore-level size gradients in intertidal molluscs. Ecology 53: 693-700.
  • Warren JK (1999). Evaporites: Their Evolution and Economics. Oxford, UK: Blackwell Scientific.
  • Warren JK (2006). Evaporites: Sediments, Resources and Hydrocarbons. Berlin, Germany: Springer.
  • Warren JK, Kendall CC (1985). Comparison of sequences formed in marine sabkha (subaerial) and salina (subaqueous) settings- modern and ancient. Am Assoc Petr Geol B 69: 1013-1023.
  • Weimer RJ, Howard JD, Lindsay DR (1982). Tidal flats. Am Assoc Petr Geol B 31: 191-246.
  • Wilson JL (1975). Carbonate Facies in Geologic History. Berlin, Germany: Springer.
  • Wright VP, Tucker ME (1991). Calciretes: an introduction. In: Wright VP, Tucker ME, editors. Calciretes. IAS Reprint Series 2. Oxford, UK: Blackwell Scientific Publications, pp. 1-22.
  • Yılmaz A (1981). Tokat ile Sivas arasındaki bölgede ofiyolitli karışığın içyapısı ve yerleşme yaşı. Bull Geol Soc Turkey 24: 31–36 (in Turkish with English abstract).
  • Yılmaz A, Yılmaz H (2006). Characteristic features and structural evolution of a post collisional basin: The Sivas Basin, Central Anatolia, Turkey. J Asian Earth Sci 27: 164-176