Comparison between natural radioactivity levels andgeochemistry of some granitoids in western Turke

Comparison between natural radioactivity levels andgeochemistry of some granitoids in western Turke

Granitoids commonly include K-feldspar, biotite and zircon, apatite, titanite, allanite, and xenotime crystals, which are known to contain common radioactive elements. Radioactive isotopes of 40K, 238U, and 232Th can be harmful to human health with increasing dosage and their quantification should be well defined to assess the suitability of wall-rock granitoids for indoor and outdoor purposes. In this study, it is aimed to correlate the possible relationship between concentrations of natural radionuclides and SiO2, Na2O, K2O, and CaO together with elements U, Th, Zr, Y, Ba, Rb, and Sr to provide a basic approach to the compatibility of geochemical data with natural radioactivity levels of granitic to dioritic rocks in western Turkey. 226Ra, 228Ac, and 40K radioactivity concentrations of the granitoid samples from seven locations range between 15.6 ± 1.5 and 139.7 ± 11.2, 12.0 ± 1.1 and 93.4 ± 9.0, and 297.5 ± 15.5 and 880.2 ± 47.5 Bq/kg, respectively. The lowest 226Ra, 228Ac, and 40K values occur in the Karaburun granitoids while the Buldan granitoids have the highest values. Our data confirm that the silica-rich acidic granitoids have higher natural radioactivity levels than silica-poor basic granitoids and high natural radioactivity levels have been closely associated with high SiO2, Na2O, K2O, Rb, and Ba contents, which may be explained by postmagmatic events of metasomatism and alteration. CaO, Sr, Y, and Zr do not show any correlation with natural radioactivity levels. Natural radioactivity parameters of the studied granitoids are within the safe dosage limits specified in international standards and are safe for use as construction materials. However, metasomatized or strongly altered granitoids may have elevated natural radioactivity levels and hence careful attention is needed for such granitoids.

___

  • Ahmed NK (2005). Measurement of natural radioactivity in building materials in Qena city Upper Egypt. J Environ Radioact 83: 91-99.
  • Alharbi WR, Al Zahrani JH, Abbady AGE (2011). Assessment of radiation hazard indices from granite rocks of the Southeastern Arabian Shield, Kingdom of Saudi Arabia. Aust J Basic Appl Sci 5: 672-682.
  • Attendorn HG, Bowen R (1994). Isotopes in the Earth Sciences. Amsterdam, the Netherlands: Springer.Beretka J, Mathew PJ (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48: 87-95.
  • Blundy J, Wood B (2003). Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210: 383-397.
  • Canbaz B, Çam F, Yaprak G, Candan O (2010). Natural radioactivity (226Ra, 232Th and 40K) and assessment of radiological hazards in the Kestanbol granitoid, Turkey. Radiat Prot Dosim 141: 192-198.
  • Çetin E, Altınsoy N, Örgün Y (2012). Natural radioactivity levels of granites used in Turkey. Radiat Prot Dosim 151: 299-305.
  • Collins GL (1999). Equal time for the origin of granite - a miracle. Reports of the National Center for Science Education 19: 20-28.
  • De Capitani L, Carnevale M, Fumagalli M (2007). Gamma-ray spectroscopy determination of radioactive elements in late-Hercynian plutonic rocks of Val Biandino and Val Trompia (Lombardia, Italy). Period Mineral 76: 25-39.
  • Deer WA, Howie RA, Zussman J (2001). Rock-Forming Minerals, Volume 4A: Framework Silicates – Feldspars. 2nd ed. London, UK: Geological Society of London.
  • Delaloye M, Bingöl E (2000). Granitoids from Western and Northwestern Anatolia: Geochemistry and modeling of geodynamic evolution. Int Geol Rev 42: 241-268.
  • Doventon JH, Prensky SE (1992). Geological applications of wireline logs: A synopsis of developments and trends. Log Analyst 33: 286-303.
  • El-Arabi AM, Abbady AGE, Khalifa IH (2007). Radioactive and geochemistry characteristics of the garnetiferous granite of Um Sleimat area, Egypt. Online Journal of Earth Sciences 1: 9-20.
  • El Feky MG, El Mowafy AA, Abdel Warith A (2011). Mineralogy, geochemistry, radioactivity and environmental impacts of Gabal Marwa granites, southeastern Sinai, Egypt. Chinese J Geochem 30: 175-186.
  • Erkül F, Erkül ST, Ersoy Y, Uysal İ, Klötzli U (2013). Petrology, mineral chemistry and Sr-Nd-Pb isotopic compositions of granitoids in the Central Menderes Metamorphic Core Complex: constraints on the evolution of Aegean lithosphere slab. Lithos 180-181: 74-91.
  • Erkül ST (2012). Petrogenetic evolution of the Early Miocene Alaçamdağ volcano-plutonic complex, northwestern Turkey: implications for the geodynamic framework of the Aegean region. Int J Earth Sci 101: 197-219.
  • Erkül ST, Erkül F (2012). Magma interaction processes in syn-extensional granitoids: the Tertiary Menderes Metamorphic Core Complex, Western Turkey. Lithos 142-143: 16-33.
  • Erkül ST, Sözbilir H, Erkül F, Helvacı C, Ersoy Y, Sümer Ö (2008). Geochemistry of I-type granitoids in the Karaburun Peninsula, West Turkey: evidence for Triassic continental arc magmatism following closure of the Palaeotethys. Island Arc 17: 394-418.
  • European Commission (1999). Radiation Protection 112. Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials. Brussels, Belgium: Directorate-General Environment, Nuclear Safety and Civil Protection.
  • Faure G (1986). Principles of Isotope Geology. New York, NY, USA: Wi l e y.Gilmore GR (2008) Practical Gamma-Ray Spectroscopy. 2nd ed. Chichester, UK: John Wiley.
  • Jahangiri A, Ashrafi S (2011). Natural radioactivity in Iranian granites used as building materials. J Environ Stud 36: 16-18.
  • Karadeniz Ö, Akal C (2014). Radiological mapping in the granodiorite area of Bergama (Pergamon)-Kozak, Turkey. J Radioanal Nucl Ch 302: 361-373.
  • Karadeniz Ö, Çıyrak N, Yaprak G, Akal C (2011). Terrestrial gamma exposure in the granodiorite area of Bergama (Pergamon) – Kozak, Turkey. J Radioanal Nucl Ch 288: 919–926.
  • Kovler K (2012). Radioactive materials. In: Pacheco-Torgal F, Jalali S, Fucic A, editors. Toxicity of Building Materials. Cambridge, UK: Woodhead Publishing, pp. 196-240.
  • Krieger R (1981). Radioactivity of construction materials. Betonwerk Fertigteil Technology 47: 468-473.
  • Mason B, Moore CB (1982). Principles of Geochemistry. New York, NY, USA: Wiley & Sons.
  • Middlemost EAK (2013). Magmas, Rocks and Planetary Development: A Survey of Magma/Igneous Rock Systems. London, UK: Routledge Taylor and Francis Group.
  • MTA (1964). Geological Map of Turkey-İzmir, Denizli (1:500.000). Ankara, Turkey: Mineral Research and Exploration Institute of Tu r k e y.
  • OECD (1979) Nuclear Energy Agency. Exposure to Radiation from Natural Radioactivity in Building Materials. Report by NEA Group of Experts. Paris, France: OECD.
  • Örgün Y, Altınsoy N, Gültekin AH, Karahan G, Çelebi N (2005). Natural radioactivity levels in granitic plutons and groundwaters in southeast part of Eskişehir, Turkey. Appl Radiat Isotopes 63: 267-275.
  • Örgün Y, Altınsoy N, Şahin SY, Güngör Y, Gültekin AH, Karahan G, Karacık Z (2007). Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Çanakkale), Western Anatolia, Turkey. Appl Radiat Isotopes 65: 739-747.
  • Osmanlıoğlu AE (2006). Natural radioactivity and evaluation of effective dose equivalent of granites in Turkey. Radiat Prot Dosim 121: 325-329.
  • Özmen SF, Boztosun I, Yavuz M (2013). Determination of gamma radioactivity Levels and associated dose rates of soil samples of the Akkuyu/Mersin using high-resolution gamma-ray spectrometry. Rad Prot Dosim 158: 461-465.
  • Öztürk BC, Yaprak G, Çam NF, Candan O (2015). A radiological survey of the Eğrigöz granitoid, western Anatolia/Turkey. Rad Prot Dosim 164: 510-518.
  • Pagel M (1982). The mineralogy and geochemistry of uranium, thorium, and rare-earth elements in two radioactive granites of the Vosges, France. Mineral Mag 46: 149-161.
  • Papadopoulos A, Christofides G, Koroneos A, Papadopoulou L, Papastefanou C, Stoulos S (2013). Natural radioactivity and radiation index of the major plutonic bodies in Greece. J Environ Radioactiv 124: 227-238.
  • Pavlidou S, Koroneos A, Papastefanou C, Christofides G, Stoulos S, Vavelides M (2006). Natural radioactivity of granites used as building materials. J Environ Radiactiv 89: 48-60.
  • Pourimani R, Ghahri R, Zarel MR (2014). Natural radioactivity concentrations in Alvand granitic rocks in Hamadan, Iran. Rad Prot Environ 37: 132-142.
  • Qureshi AA, Tariq SA, Ud Din K, Manzoor S, Calligaris C, Waheed A (2014). Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan. J Rad Res Appl Sci 7: 438-447.
  • Rankama K, Sahama TG (1950). Geochemistry. Chicago, IL, USA: University of Chicago Press and Cambridge University Press.
  • Rizzo S, Brai M, Basile S, Bellia S, Hauser S (2001). Gamma activity and geochemical features of building materials: estimation of gamma dose rate and indoor radon levels in Sicily. Appl Radiat Isot 55: 259-265.
  • Rogers JJW, Ragland PC (1961). Variation of thorium and uranium in selected granitic rocks. Geochim Cosmochim Ac 25: 99-109.
  • Rudnick RL, Gao S (2003). Composition of the continental crust. In: Rudnick RL, editor. The Crust. Amsterdam, the Netherlands: Elsevier, pp. 1-64.
  • Sayın N (2013). Radioactive element contents of some granites used as building materials: insights into the radiological hazards. Bull Eng Geol Environ 72: 579-587.
  • Streckeisen A (1976). To each plutonic rock its proper name. Earth-Sci Rev 12: 1-33.
  • Taylor SR, McLennan SM (1985). The Continental Crust: Its Composition and Evolution. Oxford, UK: Blackwell Scientific Publications.
  • Turcotte D, Schubert G (2002). Geodynamics. 2nd ed. Cambridge, UK: Cambridge University Press. Tzortzis M, Haralabos T, Christofides S, Christodoulides G (2003). Gamma radiation measurements and dose rates in commercially used natural tiling rocks (granites). J Environ Radioact 70: 223-235.
  • UNSCEAR (1982). Ionizing Radiation: Sources and Biological Effects. Annex B, D. New York, NY, USA: United Nations.
  • UNSCEAR (1988), Report to the General Assembly. New York, NY, USA: United Nations.
  • UNSCEAR (1993). Exposure from Natural Sources of Radiation. Report to the General Assembly, with Scientific Annexes. New York, NY, USA: United Nations.
  • UNSCEAR (2000). Sources and Effects of Ionizing Radiation. Report to the General Assembly, with Scientific Annexes. United Nations Sales Publication E.00.IX.3. New York, NY, USA: United Nations.
  • UNSCEAR (2008). Sources of Ionizing Radiation, Report Vol. I, II. Annex, B, D. New York, NY, USA: United Nations.
  • Xinwei LW, Lingqing J, Xiaodan Y, Leipeng S, Gelian D (2006). Specific activity and hazards of Archeozoic-Cambrian rock samples collected from the Weibei area of Shaanxi, China. Radiat Prot Dosim 118: 352-359.