İnşaat Sektöründeki İş Kazalarının Hata Ağacı Analizi ile Değerlendirilmesi

İnşaat sektörü hem dünyada hem de Türkiye’de en çok iş kazasının yaşandığı sektörlerin başında gelmektedir. Ölüm, yaralanma, sürekli iş görmezlik veya meslek hastalıklarıyla sonuçlanan iş kazalarının nedenlerinin belirlenmesi, iş kazalarına karşı önlemler alınması güncelliğini koruyan önemli bir problemdir. Bu çalışma kapsamında Türkiye’de inşaat sektöründe farklı zamanlarda meydana gelen iş kazalarının ölüm ve yaralanma oranlarından yararlanılarak hata ağacı analizi gerçekleştirilmiştir. Hata ağacının istenmeyen tepe olayı, iş kazası olarak tanımlanmıştır. Hata ağacı yapısı, iş kazalarını ve nedenlerini ilişkilendiren minimum kesme kümelerinden oluşmaktadır. Tümdengelimsel bir yaklaşımla hesaplamaların gerçekleştirildiği hata ağacı analizinde, minimum kesme kümelerinin ve istenmeyen tepe olayın hata olasılığı değerleri hesaplanırken Boolean matematiğinden yararlanılmaktadır. Çalışma kapsamında hem iş kazalarının meydana gelme olasılıkları hem de hata olarak tanımlanan iş kazalarının kritik önem faktörleri ortaya konmuştur. İş kazalarına karşı alınacak önlemler sıralamasında, göreceli olarak minimum kesme kümelerinin olasılık değerleri dikkate alınabileceği gibi kritik önem faktörlerinin de bir sıralama ölçütü olarak kullanılabileceği sonucuna varılmıştır. Çalışma, hata ağacı analizinin Türkiye’deki iş kazalarının analizinde etkin bir şekilde kullanılabileceğini göstermektedir. Ayrıca bu çalışmada oluşturulan hata ağacı yapısı ile yetkili mercilerin gerekli önlemleri alabilmesi açısından görsel bir model ortaya koyulmuştur.

Evaluation of Occupational Accidents in the Construction Industry with Fault Tree Analysis

The majority of the numbers of occupational accidents occurred due to the construction industry both in Turkey and all over the world. Determining the causes of occupational accidents resulting in death, injury, permanent incapacity, or occupational diseases is necessary at present; thus, precautions against occupational accidents can be determined and applied. Fault tree analysis was applied by using the death and injury rates of occupational accidents at different times in the construction industry in Turkey in this study. The undesired top event of the fault tree was defined as an occupational accident. The fault tree structure consists of minimum cut sets relating to occupational accidents and their causes. In fault tree analysis, where calculations were performed with a deductive approach, Boolean algebra calculated the unavailability values of the minimum cut sets and the undesired top event. Both the possibilities of occupational accidents and the critical importance factors of the occupational accidents defined as errors are revealed. It has been concluded that relatively the probability values of the minimal cut sets can be taken into account, and the critical importance factors can be used as a ranking criterion in the order of measures to be taken against occupational accidents. The study displays that fault tree analysis can be used effectively to analyze occupational accidents in Turkey. In addition, with the fault tree structure created in this study, a visual model was presented for the competent authorities to take the necessary precautions.

___

  • https://www.ilo.org/, Son Erişim Tarihi: 04.07.2021
  • 6331 Sayılı İş Sağlığı ve Güvenliği Kanunu, 2012.
  • Carter G., Smith, S., Safety Hazard Identification on Construction Projects, J. Constr. Eng. Manag., 132(2), 197-205, 2006.
  • Hinze, J., Thurman, S., Wehle, A., Leading Indicators of Construction Safety Performance, Safety Science, 51(1), 23-28, 2013.
  • Yang, K., Ahn, C. R., Kim, H., Validating Ambulatory Gait Assessment Technique for Hazard Sensing in Construction Environments, Automation in Construction, 98, 302-309, 2019.
  • Hallowell, M. R., Gambatese, J. A., Construction Safety Risk Mitigation. J. Constr. Eng. Manag., 135(12), 1316-1323, 2009.
  • Sousa, V., Almeida, N. M., Dias, L. A., Risk-Based Management of Occupational Safety and Health in the Construction Industry - Part 1: Background Knowledge, Safety Science, 66, 75-86, 2014.
  • Müngen, U., İnşaat Sektörümüzdeki Başlıca İş Kazası Tipleri, Türkiye Mühendislik Haberleri, 469, 32-39, 2011.
  • Filho, J. M. J., Fonseca, E. D., Lima, F. P. A., Duarte, F. J. C. M., Organizational Factors Related to Occupational Accidents in Construction, Work, 41, 4130-4136, 2012.
  • Carrillo-Castrillo, J. A., Trillo-Cabello, A. F., Rubio-Romero, J. C., Construction Accidents: Identification of the Main Associations Between Causes, International Journal of Occupational Safety and Ergonomics, 23(2), 240-250, 2017.
  • Mohammad M. Z., Hadikusumo, B. H. W., A Model of Integrated Multilevel Safety Intervention Practices in Malaysian Construction Industry, Procedia Engineering, 171, 396-404, 2017.
  • Hoła, B., Szóstak, M., An Occupational Profile of People Injured in Accidents at Work in the Polish Construction Industry, Procedia Engineering, 208, 43-51, 2017.
  • Shuang, D., Heng, L., Skitmore, M., Qin, Y., An Experimental Study of Intrusion Behaviors on Construction Sites: The Role of Age and Gender, Safety Science, 115, 425-434, 2019.
  • Abas, N., H., Noridan, M., R., Rahmat, M. H., Abas, N. A., Ibrahim, N. Q., Causes of Accidents Involving Scaffolding at Construction Sites, Journal of Technology Management and Business, 7(1), 75-86, 2020.
  • Halim, N. N. A. A., Jaafar, M. H., Kamaruddin, M. A., Kamaruzaman, N. A., Singh, P. S. J., The Causes of Malaysian Construction Fatalities, Journal of Sustainability Science and Management, 15(5), 236-256, 2020.
  • Etiler N, Çolak B, Biçer U, Barut N., Fatal Occupational Injuries Among Workers in Kocaeli, Turkey, 1990-1999, Int J Occup Environ Health, 10(1), 55-62, 2004.
  • Çavuş, A., Taçgın, E., Türkiye’de İnşaat Sektöründeki İş Kazalarının Sınıflandırılarak Nedenlerinin İncelenmesi, Academic Platform Journal of Engineering and Science (APJES), 4(21), 13-24, 2016.
  • Cameron, I., Gillan, G., Duff, A.R., Issues in the Selection of Fall Prevention and Arrest Equipment, Engineering, Construction and Architectural Management, 14(4), 363-374, 2007.
  • Wu, W., Yang, H., Li, Q., Chew, D., An Integrated Information Management Model for Proactive Prevention of Struck-by-Falling-Object Accidents on Construction Sites, Automation in Construction, 34, 67-74, 2013.
  • Behm, M., Schneller, A., Application of the Loughborough Construction Accident Causation Model: A Framework for Organizational Learning, Construction Management and Economics, 31(6), 580-595, 2013.
  • Liao, C. W., Chiang, T. L., Reducing Occupational Injuries Attributed to Inattentional Blindness in the Construction Industry, Safety Science, 89, 129-137, 2016.
  • Liy, C.H., Ibrahim, S.H., Affandi, R., Rosli, N.A., Nawi, M.N.M., Causes of Fall Hazards in Construction Site Management, International Review of Management and Marketing, 6(8), 257-263, 2016.
  • Siddula, M., Dai, F., Ye, Y., Fan, J., Classifying Construction Site Photos for Roof Detection: A Machine-Learning Method towards Automated Measurement of Safety Performance on Roof Sites, Construction Innovation, 16(3), 368-389, 2016.
  • Umer, W., Li, H., Lu, W., Szeto, G. P. Y., Wong, A. Y. Development of a Tool to Monitor Static Balance of Construction Workers for Proactive Fall Safety Management, Automation in Construction, 94, 438-448, 2018.
  • Winge, S., Albrechtsen, E., Accident Types and Barrier Failures in the Construction Industry, Safety Science, 105, 158-166, 2018.
  • Kines, P., Occupational Injury Risk Assessment Using Injury Severity Odds Ratios:Male Falls from Heights in the Danish Construction Industry, Human and Ecological Risk Assessment, 7(7), 1929-1943, 2001.
  • Hu, K., Rahmandad, H., Smith‐Jackson, T., Winchester, W., Factors Influencing the Risk of Falls in The Construction Industry: A Review of the Evidence, Construction Management and Economics, 29(4), 397-416, 2011.
  • Chi, C. F., Lin, S. Z., Dewi, R. S., Graphical Fault Tree Analysis for Fatal Falls in the Construction Industry, Accident Analysis and Prevention, 72, 359-369, 2014.
  • Shin, M., Lee, H. S., Park, M., Moon, M., Han, S., A System Dynamics Approach for Modelling Construction Workers' Safety Attitudes and Behaviors, Accident Analysis and Prevention, 68, 95-105, 2014.
  • Bilir, S., Gürcanlı, G. E., A Method for Determination of Accident Probability in the Construction Industry, Teknik Dergi, 29(4), 8537-8561, 2018.
  • Baradan, S., Usmen, M. A., Comparative Injury and Fatality Risk Analysis of Building Trades, Journal of Construction Engineering and Management, 132(5), 533–539, 2006.
  • Guo, B. H., Goh, Y. M., Ontology for Design of Active Fall Protection Systems, Automation in Construction, 82, 138-153, 2017.
  • Baradan, S., Akboğa, Ö., Çetinkaya, U., Usmen, M. A., Ege Bölgesindeki İnşaat İş Kazalarının Sıklık ve Çapraz Tablolama Analizleri, İMO Teknik Dergi, 27(1), 7345-7370, 2016.
  • Gürcanlı, G. E., Müngen, U., Analysis of Construction Accidents in Turkey and Responsible Parties, Industrial Health, 51, 581-595, 2013.
  • Hadipriono, F.C., Expert System for Construction Safety. I: Fault-Tree Models, Journal of Performance of Constructed Facilities, 6(4), 246-260, 1992.
  • Hadipriono, F.C., Expert System for Constructıon Safety II: Knowledge Base, Journal of Performance of Constructed Facilities, 6(4), 261-274, 1992.
  • LeBeau, K. H., Wadia-Fascetti, S. J., 20, Fault Tree Analysis of Schoharie Creek Bridge Collapse, Journal of Performance of Constructed Facilities, 21(4), 320-326, 2007.
  • Yang, R., Deng, Y., Analysis on Security Risks in Tunnel Construction Based on the Fault Tree Analysis, IOP Conf. Series: Earth and Environmental Science, 2021.
  • https://ec.europa.eu/eurostat/data/database, Son Erişim Tarihi: 18.10.2021.
  • http://www.sgk.gov.tr/, Son Erişim Tarihi: 04.07.2021.
  • Waehrer, G.M., Dong, X.S., Miller, T., Halie, E., Men, Y., Costs of Occupational Injuries in Construction in the United States, Accident Analysis and Prevention, 39(6), 1258-1266, 2007.
  • Sacks, R., Rozenfeld, O., Rosenfeld, Y., Spatial and Temporal Exposure to Safetyhazards in Construction, Journal of Construction Engineering and Management, 135(8), 726-736, 2009.
  • Bertsche, B., Fault Tree Analysis, FTA, Reliability in Automotive and Mechanical Engineering, Springer, Berlin, Heidelberg, 2008.
  • Ericson, C. A., Fault Tree Analysis- A History, 17th International System Safety Conference, USA, 1999.
  • Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J., Fault Tree Handbook with Aerospace Applications, Washington DC. NASA, 2002.
  • Xing L., Amari S.V., Fault Tree Analysis, Handbook of Performability Engineering, Misra, K. B., Springer, London, 2008.
  • Lee, W. S., Grosh, D. L., Tillman, F. A., Lie, C. H., Fault Tree Analysis, Methods, and Applications-A Review, IEEE Transactions on Reliability, 34(3), 194-203, 1985.
  • Whitesitt, J. E., Boolean Algebra and Its Applications, Courier Corporation, Mineola, New York, 2012.
  • The Institute of Internal Auditors, Practice Advisory 2320-2: Root Cause Analysis, Primary Related Standard, 2320-Analysis and Evaluation, 2011.
  • Serrat O., The Five Whys Technique, Knowledge Solutions, Springer, Singapore, 2017.
  • Dizdar, E. N., Fault Tree Analysis For System Reliability, Teknoloji, 6(3-4), 35-40, 2003.
  • Kum, S., Petrol Tankerlerinde Risk Değerlendirmesi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, 2005.