Ani Bir Düşüdeki B-tipi Hidrolik Sıçramanın Sayısal Modellenmesi

Ani bir düşü sonrasında oluşan B-tipi hidrolik sıçramanın özellikleri, farklı akım koşulları için deneysel ve sayısal olarak incelenmiştir. Sonlu Hacimler Yöntemine dayalı ANSYS-Fluent paket programı kullanılarak, akımı idare eden denklemler Standart k-ε, Shear Stress Transport ve Reynolds Stress türbülans modelleri ile sayısal olarak çözülmüştür. Su yüzü profilinin hesabında Akışkan Hacimleri Yöntemi kullanılmıştır. Hesaplama ağı yoğunluğunun sayısal bulgular üzerindeki hata nispetini belirlemek amacıyla Ağ Yakınsama İndeksi yaklaşımı kullanılmıştır. Sayısal hesaplamalardan elde edilen su yüzü ve hız profilleri, deneysel ölçümlerle karşılaştırılmıştır. Ölçülen ve hesaplanan su yüzü ve hız profillerindeki ortalama karesel hata ve ortalama mutlak göreli hata ölçütlerine göre, Reynolds Stress modelinin, B-tipi hidrolik sıçrama profilinin ve hız alanının belirlenmesinde, burada kullanılan diğer iki modelden daha başarılı olduğu görülmüştür.

Numerical Modeling of B-Type Hydraulic Jump at an Abrupt Drop

The properties of a B-type hydraulic jump at an abrupt drop are analyzed experimentally and numerically for different flow cases. Using the Standard k-ε, Shear Stress Transport and Reynolds Stress turbulence closure models, the governing equations are solved numerically using ANSYS-Fluent program package which is based on the Finite Volume Method. The Volume of Fluid (VOF) method is used to determine the free surface profile. Grid independence study is carried out using a Grid Convergence Index (GCI) analysis. The numerical results for the free surface and velocity profiles of flow from the present turbulence models are compared with experimental data. Mean square errors and mean absolute relative errors of measured and predicted free surface profiles and velocity fields indicate that Reynolds Stress Model is a more successful turbulence closure model than the other two for the determination of surface profile and velocity field of the B-type hydraulic jump.

___

  • [1] Tokyay, N. D., Altan-Sakarya, A. B. ve Eski, E., Numerical simulation of minimum B-jumps at abrupt drops. International Journal for Numerical Methods in Fluids, 56(9), 1605–1623, 2008.
  • [2] Tokyay, N. D. ve Ulubayram, H., Eşiklerde hidrolik sıçrama. IMO Teknik Dergi, 1990(1), 9-23, 1990.
  • [3] Del Giudice, G., Gisonni, C. ve Rasulo, G., Design of a Scroll Vortex Inlet for Supercritical Approach Flow. Journal of Hydraulic Engineering, 136(10), 837–841, 2010.
  • [4] Ram, K. V. S. ve Prasad, R., Spatial B-jump at sudden channel enlargements with abrupt drop. Journal of Hydraulic Engineering-ASCE, 124(6), 643–646, 1998.
  • [5] Kawagoshi, N. ve Hager, W. H., B-Jump in Sloping Channel, II.. Journal of Hydraulic Research, 28(4), 461–480, 1990.
  • [6] Gümüş, V., Şimşek, O., Soydan, N. G., Aköz, M. S. ve Kırkgöz, M. S., Tambur Kapak Mansabında Oluşan Batmış Hidrolik Sıçramanın Sayısal Analizi. International Construction Congress 2012, Isparta, 2012.
  • [7] Gümüş, V., Aköz, M.S, Şimşek, O., Soydan, N. G. ve Kırkgöz, M.S., Experimental and Numerical Modeling of Free Hydraulic Jump Downstream of a Gate. 10th International Congress on Advances in Civil Engineering, Ankara, 2012.
  • [8] Kırkgöz, M. S., Aköz, M. S. ve Öner, A. A., Numerical modeling of flow over a chute spillway. Journal of Hydraulic Research, 47(6),790–797, 2009.
  • [9] Öner, A. A., Aköz, M. S., Kırkgöz, M. S. ve Gümüş, V., Experimental Validation of Volume of Fluid Method for a Sluice Gate Flow. Advances in Mechanical Engineering, 2012, 10, 2012.
  • [10] Oertel, M. ve Bung, D. B., Initial stage of two-dimensional dam-break waves: laboratory versus VOF. Journal of Hydraulic Research, 50(1), 89–97, 2012.
  • [11] Launder B. E. ve Spalding D., Lectures in Mathematical Models of Turbulence, London. Academic Press, 1972.
  • [12] Menter, F. R., 2-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, 32(8), 1598–1605, 1994.
  • [13] Launder, B. E., Reece, G. J. ve Rodi, W., Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 68(3), 537–566, 1975.
  • [14] Wilcox, D.C., Turbulence Modeling for CFD, California. DCW Industries, Inc., 2000.
  • [15] Hirt, C. W. ve Nichols, B. D., Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries. Journal of Computational Physics, 39(1), 201–225, 1981.
  • [16] Ansys Inc., Release 14.0. www.ansys.com, 2012.
  • [17] Roache, P. J., Verification of codes and calculations. AIAA Journal, 36(5), 696 –702, 1998.
  • [18] Kırkgöz, M.S. ve Ardıçlıoğlu, M., Velocity profiles of developing and developed open channel flow. Journal of Hydraulic Engineering, 123(12), 1099-1105, 1997.
  • [19] Chen, H.C. ve Patel, V.C., Near-wall turbulence models for complex flows including separation. AIAA journal, 26(6), 641-648, 1988.
  • [20] Versteeg, H.K. ve Malalasekera, W., An Introduction to Computational Fluid Dynamics: the finite volume method, England. Pearson Education, 2007.
  • [21] Gümüş, V., Aköz, M. S., ve Kırkgöz, M. S., Kapak Mansabında Batmış Hidrolik Sıçramanın Deneysel ve Sayısal Modellenmesi. İMO Teknik Dergi ,24 (2), 6379-6397, 2013.