Theoretical investigation of the interaction between the metal phthalocyanine [MPc]a (M = Sc, Ti, and V; a = –1, 0, and +1) complexes and formaldehy

Theoretical investigation of the interaction between the metal phthalocyanine [MPc]a (M = Sc, Ti, and V; a = –1, 0, and +1) complexes and formaldehy

Formaldehyde $(FA, CH_2O)$ is one of the toxic volatile organic compounds that cause harmful effects on the human body. In this work, the interaction of FA gas with metal phthalocyanine (MPc) molecules was studied by employing density functional theory calculations. A variety of [MPc]a (M = Sc, Ti, and V; a = –1, 0, and +1) complexes were studied, and the electronic properties, interaction energies, and charge transfer properties of all of the studied molecules were systematically discussed. Among the studied complexes,the Sc and Ti phthalocyanines were more reactive toward the adsorption of FA gas. Moreover, it was revealed that the interaction of the $[ScPc]^{+1} and [TiPc]^{0}$ complexes with the $CH_2O$ molecule was stronger, , in which the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gap of 46% and 36% decreased after FA adsorption. The results indicated that the MPc-based materials may be a promising candidate for the detection of FA gas.

___

  • 1. Pestryakov AN. Modification of silver catalysts for oxidation of methanol to formaldehyde. Catalysis Today 1996; 28 (3): 239-244. doi: 10.1016/0920-5861(95)00239-1
  • 2. Vohs JM, Barteau MA. Conversion of methanol, formaldehyde and formic acid on the polar faces of zinc oxide. Surface Science 1986; 176 (1-2): 91-114. doi: 10.1016/0039-6028(86)90165-2
  • 3. Maroto A, Balasubramanian K, Burghard M, Kern K. Functionalized metallic carbon nanotube devices for pH sensing. ChemPhysChem 2007; 8 (2): 220-223. doi: 10.1002/cphc.200600498
  • 4. Liu Z, Searson PC. Single nanoporous gold nanowire sensors. The Journal of Physical Chemistry B 2006; 110 (9): 4318-4322. doi: 10.1021/ jp056940t
  • 5. Wang J. Biomolecule‐functionalized nanowires: from nanosensors to nanocarriers. ChemPhysChem 2009; 10 (11): 1748-1755. doi: 10.1002/cphc.200900377
  • 6. Shao MW, Shan YY, Wong NB, Lee ST. Silicon nanowire sensors for bioanalytical applications: glucose and hydrogen peroxide detection. Advanced Functional Materials 2005; 15 (9): 1478-1482. doi: 10.1002/adfm.200500080
  • 7. Shao MW, Yao H, Zhang ML, Wong NB, Shan YY et al. Fabrication and application of long strands of silicon nanowires as sensors for bovine serum albumin detection. Applied Physics Letters 2005; 87 (18): 183106. doi: 10.1063/1.2123393
  • 8. Liu H, Kameoka J, Czaplewski DA, Craighead HG. Polymeric nanowire chemical sensor. Nano Letters 2004; 4 (4): 671-675. doi: 10.1021/ nl049826f
  • 9. Shipway AN, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 2000; 1 (1): 18-52. doi: 10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L
  • 10. Dovgolevsky E, Konvalina G, Tisch U, Haick H. Monolayer-capped cubic platinum nanoparticles for sensing nonpolar analytes in highly humid atmospheres. The Journal of Physical Chemistry C 2010; 114 (33): 14042-14049. doi: 10.1021/jp105810w
  • 11. Tiemann M. Porous metal oxides as gas sensors. Chemistry–A European Journal 2007; 13 (30): 8376-8388. doi: 10.1002/chem.200700927
  • 12. Klyamer D, Sukhikh A, Gromilov S, Krasnov P, Basova T. Fluorinated metal phthalocyanines: interplay between fluorination degree, films orientation, and ammonia sensing properties. Sensors 2018; 18 (7): 2141. doi: 10.3390/s18072141
  • 13. Mphuthi NG, Adekunle AS, Ebenso EE. Electrocatalytic oxidation of Epinephrine and Norepinephrine at metal oxide doped phthalocyanine/MWCNT composite sensor. Scientific Reports 2016; 6: 26938. doi: 10.1038/srep26938
  • 14. Ridhi R, Saini GSS, Tripathi SK. Sensing of volatile organic compounds by copper phthalocyanine thin films. Materials Research Express 2017; 4 (2): 025102. doi: 10.1088/2053-1591/aa54d1
  • 15. Peisert H, Schwieger T, Auerhammer JM, Knupfer M, Golden MS et al. Order on disorder: Copper phthalocyanine thin films on technical substrates. Journal of Applied Physics 2001; 90 (1): 466-469. doi: 10.1063/1.1375017
  • 16. Jiang H, Ye J, Hu P, Wei F, Du K et al. Fluorination of metal phthalocyanines: Single-crystal growth, efficient n-channel organic field-effect transistors, and structure-property relationships. Scientific Reports 2014; 4: 7573. doi: 10.1038/srep07573
  • 17. Abramczyk H, Brozek-Pluska B, Surmacki J, Musial J, Kordek R. Oncologic photodynamic diagnosis and therapy: confocal Raman/ fluorescence imaging of metal phthalocyanines in human breast cancer tissue in vitro. Analyst 2014; 139 (21): 5547-5559. doi: 10.1039/ C4AN00966E
  • 18. Allen CM, Sharman WM, Van Lier JE. Current status of phthalocyanines in the photodynamic therapy of cancer, Journal of Porphyrins and Phthalocyanines 2001; 5 (02): 161-169. doi: 10.1002/jpp.324
  • 19. Sizun T, Bouvet M, Chen Y, Suisse JM, Barochi G et al. Differential study of substituted and unsubstituted cobalt phthalocyanines for gas sensor applications. Sensors and Actuators B: Chemical 2011; 159 (1): 163-170. doi: 10.1016/j.snb.2011.06.067
  • 20. Bohrer FI, Colesniuc CN, Park J, Ruidiaz ME, Schuller IK et al. Comparative gas sensing in cobalt, nickel, copper, zinc, and metal-free phthalocyanine chemiresistor. Journal of the American Chemical Society 2009; 131 (2): 478-485. doi: 10.1021/ja803531r
  • 21. Parkhomenko RG, Sukhikh AS, Klyamer DD, Krasnov PO, Gromilov S et al. Thin films of unsubstituted and fluorinated palladium phthalocyanines: Structure and sensor response toward ammonia and hydrogen. The Journal of Physical Chemistry C 2017; 121 (2): 1200- 1209. doi: 10.1021/acs.jpcc.6b10817
  • 22. Gülmez AD, Polyakov MS, Volchek VV, Kostakoğlu ST, Esenpinar AA et al. Tetrasubstituted copper phthalocyanines: correlation between liquid crystalline properties, films alignment and sensing properties. Sensors and Actuators B: Chemical 2017; 241: 364-375. doi: 10.1016/j. snb.2016.10.073
  • 23. Radhakrishnan S, Deshpande S. Conducting polymers functionalized with phthalocyanine as nitrogen dioxide sensors. Sensors 2002; 2 (5) 185-194. doi: 10.3390/s20500185
  • 24. Dong Z, Kong X, Wu Y, Zhang J, Chen Y. High-sensitive room-temperature NO2 sensor based on a soluble n-type phthalocyanine semiconductor. Inorganic Chemistry Communications 2017; 77: 18-22. doi: 10.1016/j.inoche.2017.01.023
  • 25. Aziz F, Sayyad MH, Sulaiman K, Majlis BH, Karimov KS et al. Influence of humidity conditions on the capacitive and resistive response of an Al/VOPc/Pt co-planar humidity sensor. Measurement Science and Technology 2001; 23 (11): 014001. doi: 10.1088/0957- 0233/23/1/014001
  • 26. Wang WB, Li XG, Wang SR, Hou W. The preparation of high photosensitive TiOPc. Dyes and Pigments 2007; 72 (1): 38-41. doi: 10.1016/j. dyepig.2005.07.014
  • 27. Eguchi K, Nakagawa T, Takagi Y, Yokoyama T. Direct synthesis of vanadium phthalocyanine and its electronic and magnetic states in monolayers and multilayers on Ag (111). The Journal of Physical Chemistry C 2015; 119 (18): 9805-9815. doi: 10.1021/jp512935v
  • 28. Blowey PJ, Maurer RJ, Rochford LA, Duncan DA, Kang JH et al. The Structure of VOPc on Cu (111): Does V═ O Point Up, or Down, or Both?. The Journal of Physical Chemistry C 2018; 123 (13): 8101-8111. doi: 10.1021/acs.jpcc.8b07530
  • 29. Lü K, Jian Z, Le Z, Qian W, Qiang S et al. Sc-phthalocyanine sheet: Promising material for hydrogen storage. Applied Physics Letters 2011; 99 (16): 163104. doi: 10.1063/1.3653465
  • 30. Arokiyanathan AL, Lakshmipathi S. Impact of functional groups substitution on the molecular properties of magnesium and scandium phthalocyanines. Inorganica Chimica Acta 2018; 483: 203-210. doi: 10.1016/j.ica.2018.07.043
  • 31. Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A1988; 38 (6): 3098- 3100. doi: 10.1103/PhysRevA.38.3098
  • 32. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B 1988; 37 (2): 785-789. doi: 10.1103/PhysRevB.37.785
  • 33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.
  • 34. Theisen RF, Huang L, Fleetham T, Adams JB, Li J. Ground and excited states of zinc phthalocyanine, zinc tetrabenzoporphyrin, and azaporphyrin analogs using DFT and TDDFT with Franck-Condon analysis. The Journal of chemical physics 2015; 142 (9): 094310. doi: 10.1063/1.4913757
  • 35. Jiang H, Ye J, Hu P, Wei F, Du K et al. Fluorination of metal phthalocyanines: Single-crystal growth, efficient n-channel organic field-effect transistors, and structure-property relationships. Scientific Reports 2014; 4: 7573. doi: 10.1038/srep07573
  • 36. Chaabene M, Gassoumi B, Mignon P, Chaâbane RB, Allouche AR. New zinc phthalocyanine derivatives for nitrogen dioxide sensors: A theoretical optoelectronic investigation, Journal of Molecular Graphics and Modelling 2019; 88: 174-182. doi: 10.1016/j.jmgm.2019.01.008
  • 37. Shalabi AS, Aal SA, Assem MM, Soliman KA. Metallophthalocyanine and Metallophthalocyanine–fullerene complexes as potential dye sensitizers for solar cells DFT and TD-DFT calculations, Organic Electronics 2012; 13 (10): 2063-2074. doi: 10.1016/j.orgel.2012.06.028
  • 38. Bakas I, Fourati N, Zerrouki C, Seydou M, Maouche N et al. Surface acoustic wave sensor based on nickel (II) phthalocyanine thin films for organophosphorous pesticides selective detection. Sensors IEEE 2014; 321-324. doi: 10.1109/ICSENS.2014.6984998
  • 39. J. Moellmann, S. Grimme, DFT-D3 study of some molecular crystals. The Journal of Physical Chemistry C 2014; 118 (14): 7615-7621. doi: 10.1021/jp501237c
  • 40. Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics 1970; 19 (4): 553 -566. doi: 10.1080/00268977000101561
  • 41. Olmsted J, Williams GM. Chemistry: the Molecular Science. Jones & Bartlett Learning, 1997.
  • 42. Setvin M, Hulva J, Wang H, Simschitz T, Schmid M et al. Formaldehyde adsorption on the anatase TiO2 (101) surface: experimental and theoretical investigation. The Journal of Physical Chemistry C 2017; 121 (16): 8914-8922. doi: 10.1021/acs.jpcc.7b01434
  • 43. Cortés-Arriagada D, Villegas-Escobar N, Miranda-Rojas S, Toro-Labbé A. Adsorption/desorption process of formaldehyde onto iron doped graphene: a theoretical exploration from density functional theory calculations. Physical Chemistry Chemical Physics 2017; 19 (6): 4179-4189. doi: 10.1039/C6CP07710B
  • 44. Abbasi A. Modulation of the electronic properties of pristine and AlP-codoped stanene monolayers by the adsorption of CH2O and CH4 molecules: a DFT stud. Materials Research Express 2019; 6 (7): 076410. doi: 10.1088/2053-1591/ab1199
  • 45. Choudhuri I, Patra N, Mahata A, Ahuja R, Pathak B. B–N@ Graphene: highly sensitive and selective gas sensor. The Journal of Physical Chemistry C 2015; 119 (44): 24827-24836. doi: 10.1021/acs.jpcc.5b07359
  • 46. Huang K, Li Z, Lin J, Han G, Huang P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chemical Society Reviews 2018; 47 (14): 5109-5124. doi: 10.1039/C7CS00838D
  • 47. Faye O, Eduok U, Szpunar JA. Boron-decorated graphitic carbon nitride (g-C3N4): an efficient sensor for H2S, SO2, and NH3 capture. The Journal of Physical Chemistry C 2019; 123 (49): 29513-29523. doi: 10.1021/acs.jpcc.9b06032
  • 48. Shukla V, Wärnå J, Jena NK, Grigoriev A, Ahuja R. Toward the realization of 2D borophene based gas sensor. The Journal of Physical Chemistry C 2017; 121 (48): 26869-26876. doi: 10.1021/acs.jpcc.7b09552
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK