The solvatochromism and electronic structure of (E)-2-(2-hydroxystyryl)quinolin-8-ol

The solvatochromism and electronic structure of (E)-2-(2-hydroxystyryl)quinolin-8-ol

The (E)-2-(2-hydroxystyryl)quinolin-8-ol (abbreviated as HSQ) molecule was synthesized and characterized.The ESIPT, solvatochromism properties, electronic structure, and ground and excited electric dipole moments of this molecule were measured using absorption and fluorescence spectra recorded in 13 different solvents. Its electronic structure via electronic transitions was investigated to find the quantitative values of solvatochromism properties by LSER calculations. The ESIPT mechanism was clarified; ground and excited dipole moments were determined using solvatochromic shift methods. The DFT (B3LYP)/6-311++G(d,p) method and basis set with potential energy surface (PES) calculations of proton transfer were used to explain the ESIPT mechanism. NBO analysis, NLO properties, and behavior under an electric field were also determined.

___

  • 1. Afzal O, Kumar S, Haider MR, Ali MR, Kumar R et al. A review on anticancer potential of bioactive heterocycle quinoline. European Journal of Medicinal Chemistry 2015; 97: 871-910.
  • 2. El-Ghamaz NA, El-Menyawy EM, Diab MA, El-Bindary AA, El-Sonbati AZ et al. Optical and dielectrical properties of azo quinoline thin films. Solid State Sciences 2014; 30: 44-54.
  • 3. Gayathri K, Radhika R, Shankar R, Malathi M, Savithiri K et al. Comparative theoretical and experimental study on novel tri-quinoline system and its anticancer studies. Journal of Molecular Structure 2017; 1134: 770-780.
  • 4. Luongo G, Iadaresta F, Moccia E, Östman C, Crescenzi C. Determination of aniline and quinoline compounds in textiles. Journal of Chromatography A 2016; 1471: 11-18.
  • 5. Kaur M, Jain M, Reddy RP, Jain R. Quinolines and structurally related heterocycles as antimalarials. European Journal of Medicinal Chemistry 2010; 45: 3245-3264.
  • 6. Kidwai M, Bhushan KR, Sapra P, Saxena RK, Gupta R. Alumina-supported synthesis of antibacterial quinolines using microwaves. Bioorganic & Medicinal Chemistry 2000; 8: 69-72.
  • 7. Hunga LS, Chen CH. Recent progress of molecular organic electroluminescent materials and devices. Materials Science and Engineering: R: Reports 2002; 39: 143-222.
  • 8. Chen CH, Shi J. Metal chelates as emitting materials for organic electroluminescence. Coordination Chemistry Reviews 1998; 171: 161-174.
  • 9. Song KCh, Kim JS, Park SM, Chung KC, Ahn S et al. Fluorogenic Hg 2+ -selective chemodosimeter derived from 8-hydroxyquinoline. Organic Letters 2006; 8: 3413-3416.
  • 10. Zhang H, Wang QL, Jiang YB. 8-Methoxyquinoline based turn-on metal fluoroionophores. Tetrahedron Letters 2007; 48: 3959-3962.
  • 11. Li Z, Xi P, Huang I, Xie G, Shie Y et al. A highly selective fluorescent chemosensor for Cd(II) based on 8- hydroxyquinoline platform. Inorganic Chemistry Communications 2011; 14: 1241-1244.
  • 12. Zhu H, Fan J, Lu J, Hu M, Peng X. Optical Cu 2+ probe bearing an 8-hydroxyquinoline subunit: high sensitivity and large fluorescence enhancement. Talanta 2012; 93: 55-61.
  • 13. Haggag SMS, Farag AAM, Abdelrafea M. Spectral, thermal and optical–electrical properties of the layer-by-layer deposited thin film of nano Zn(II)-8-hydroxy-5-nitrosoquinolate complex. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2013; 110: 14-19.
  • 14. Ouyang X, Wang G, Zeng H, Zhang W, Li J. Design and synthesis of 2-substituted-8-hydroxyquinline zinc complexes with hole-transporting ability for highly effective yellow-light emitters. Journal of Organometallic Chemistry 2009; 694: 3511-3517.
  • 15. Shabestary N, Ashraf M, Bayoumi EL. A unique excitation wavelength dependence of excited-state proton transfer in para-N,N-dimethylaminosalicylic acid. Chemical Physics Letters 1984; 106: 102-110.
  • 16. Issa TB, Hassine CBA, Ghalla H, Barhoumi H, Benhamada L. Experimental and computational study of electronic, electrochemical and thermal properties of quinoline phosphate. Journal of Molecular Structure 2018; 1162: 71-80.
  • 17. Zouhiri F, Mouscadet JF, Mekouar K, Desmaële D, Savouŕe D et al. Structure-activity relationships and binding mode of styrylquinolines as potent inhibitors of HIV-1 integrase and replication of HIV-1 in cell culture. Journal of Medicinal Chemistry 2000; 43: 1533-1540.
  • 18. Naik LR, Math NN. Photo physical properties of 8-hydroxy quinoline. Indian Journal of Pure and Applied Physics 2005; 43: 743-749.
  • 19. Filip EM, Humelnicu IV, Ghirvu CI. Some aspects of 8-hydroxyquinoline in solvents. Acta Chemica IASI 2009; 17: 85-96.
  • 20. Mehata MS, Singh AK, Sinha RK. Experimental and theoretical study of hydroxyquinolines: hydroxyl group position dependent dipole moment and charge-separation in the photoexcited state leading to fluorescence. Methods and Applications in Fluorescence 2016; 4: 045004-045005.
  • 21. Zeng HP, Yang XHO, Wang TT, Yuan GZ, Zhang GH et al. Synthesis, crystal structure, and prediction of hole mobilities of 2,7’-ethylenebis(8-hydroxyquinoline). Crystal Growth and Design 2006; 6: 1697-1702.
  • 22. Barberis VP, Mikroyannidis JA. Synthesis and optical properties of aluminum and zinc quinolates through styryl substituent in 2-position. Synthetic Metals 2006; 156: 865-871.
  • 23. Podeszwa B, Niedbala H, Polanski J, Musiol R, Tabak D et al. Investigating the antiproliferative activity of quinoline-5,8-diones and styrylquinolinecarboxylic acids on tumor cell lines. Bioorganic and Medicinal Chemistry Letters 2007; 17: 6138-6141.
  • 24. Musiol R, Jampilek J, Buchta V, Silva L, Nied-Bala H et al. Antifungal properties of new series of quinoline derivatives. Bioorganic and Medicinal Chemistry 2006; 14: 3592-3598.
  • 25. Huang FC, Galemmo RA, Campbell HF. Quinolinyl-benzopyran derivatives as antagonists of leukotriene. US Patent no. 4918081, 1990.
  • 26. Budyka MF, Potashova NI, Gavrishova TN, Li VM. Reconfigurable molecular logic gate operating in polymer film. Journal of Materials Chemistry 2009; 19: 7721-7724.
  • 27. Andryukhina EN, Mashura MM, Fedorova OA, Kuzmina LG, Khovard DAK et al. Synthesis and structures of azine-based crown-containing hetarylphenylethenes. Russian Chemical Bulletin 2005; 54: 1700-1709.
  • 28. Varbanova SJ, Chervenkov SK. Synthesis of new alkoxy-hydroxystyryl-2-quinoline and alkoxy-hydroxystyryl-2- quinoline based and of their hydrochloride with expected biological action. Dokladi Na Bolgarskata Akademiya Na Naukite 1986; 39: 69-72.
  • 29. Kaslow CE, Stayner RD. Ozonolysis of styryl derivatives of nitrogen heterocycles. Journal of the American Chemical Society 1945; 67: 1716-1717.
  • 30. Yaragorla S, Singh G. C(sp3)–H functionalization of methyl azaarenes: a calcium-catalyzed facile synthesis of (E)-2-styryl azaarenes and 2-aryl-1,3-bisazaarenes. Tetrahedron Letters 2015; 56: 5924-5929.
  • 31. Che CM, Kwok CC, Lai SW, Rausch AF, Finkenzeller WJ et al. Photophysical properties and OLED applications of phosphorescent platinum(II) Schiff base complexes. Chemistry - A European Journal 2010; 16: 233-247.
  • 32. Gülseven Sıdır Y, Sıdır İ, Berber H, Türkoğlu G. Solvatochromic behavior and electronic structure of some symmetric 2-aminophenol Schiff base derivatives. Journal of Molecular Liquids 2014; 199: 57-66.
  • 33. Sıdır İ, Gülseven Sıdır Y, Berber H, Demiray F. Emerging ground and excited state dipole moments and external electric field effect on electronic structure. A solvatochromism and theoretical study on 2-((phenylimino)methyl)phenol derivatives. Journal of Molecular Liquids 2015; 206: 56-67.
  • 34. Mao F, Yan J, Li J, Jia X, Miao H et al. New multi-target-directed small molecules against Alzheimer’s disease: a combination of resveratrol and clioquinol. Organic and Biomolecular Chemistry 2014; 12: 5936-5944.
  • 35. Bilot L, Kawski A. Zur Theorie des Einflusses von Lösungsmitteln auf die Elektronenspektren der Moleküle. Zeitschrift für Naturforschung A 1962; 17: 621-627.
  • 36. Kawski A. Zur Lösungsmittelabhängigkeit der Wellenzahl von Elektronenbanden Lumineszierender Moleküle und über die Bestimmung der Elektrischen Dipolmomente im Anregungszustand. Acta Physica Polonica 1966; 29: 507-518.
  • 37. Kawski A. Progress in Photochemistry and Photophysics. Boca Raton, FL, USA: CRC Press, 1992.
  • 38. Kawski A. On the estimation of excited-state dipole moments from solvatochromic shifts of absorption and fluorescence spectra. Zeitschrift für Naturforschung A 2002; 57: 255-262.
  • 39. Kawski A. Über die Anomale Stokessche Rotverschiebung der Absorptions- und Fluoreszenzmaxima von 4- Aminophthalimid in Mischungen aus Dioxan und Wasser. Acta Physica Polonica 1964; 25: 285-290.
  • 40. Kawski A. Bojarski P, Kuklinski B, Estimation of ground- and excited-state dipole moments of Nile Red dye from solvatochromic effect on absorption and fluorescence spectra. Chemical Physics Letters 2008; 463: 410-412.
  • 41. Kawski A. Solvent-shift effect on electronic spectra and excited-state diople moments. In: Rabek JF (editor). Progress in Photochemistry and Photophysics vol. 5. Boca Raton, FL, USA: CRC Press, 1992; pp. 1-48.
  • 42. Lippert E. Dipolmoment und Elektronenstruktur von angeregten Molekülen. Zeitschrift für Naturforschung A 1955; 10: 541-545.
  • 43. Mataga N, Kaifu Y, Koizumi M. Solvent effects upon fluorescence spectra and the dipole moments of excited molecules. Bulletin of the Chemical Society Japan 1956; 29: 465-470.
  • 44. Bakhshiev NG. Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in two component solutions. Optical Spectroscopy 1964; 16: 821-832.
  • 45. Chamma A, Viallet P. Determination du moment dipolaire d’une molcule dans un tat excit singule. Comptes rendus de l’Académie des Sciences 1970; 270: 1901-1904.
  • 46. Reichardt C. Dyes as solvent polarity indicators. Chemical Reviews 1994; 94: 2319-2358.
  • 47. Reichardt C. Solvents and Solvent Effects in Organic Chemistry. Third ed. Weinheim, Germany: Wiley-VCH, 2005.
  • 48. Lide DR (editor). CRC Handbook of Chemistry and Physics, 76th ed. Boca Raton, FL, USA: CRC Press, 1995.
  • 49. Kamlet MJ, Abboud JL, Abraham MH, Taft RW. A comprehensive collection of the solvatochromic parameters, .pi.*, .alpha., and .beta., and some methods for simplifying the generalized solvatochromic equation. Journal of Organic Chemistry 1983; 48: 2877-2887.
  • 50. Kamlet MJ, Abboud JL, Taft RW. The π * scale of solvent polarities. Journal of the American Chemical Society 1997; 99: 6027-6038.
  • 51. Catalán J. Toward a generalized treatment of the solvent effect based on four empirical scales: dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. Journal of Physical Chemistry B 2009; 113: 5951-5960.
  • 52. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Physical Reviews 1965; 140: 1133-1138.
  • 53. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al. Gaussian 09, Revision D.01. Wallingford CT, USA: Gaussian, Inc., 2013.
  • 54. Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Reviews A 1988; 38: 3098-3100.
  • 55. Lee C, Yang W, Parr RG. Development of the Colle–Salvetti correlation energy formula into a functional of the electron density. Physical Reviews B 1988; 37: 785-789.
  • 56. Lan SC, Liu YH. TDDFT study on the excited-state proton transfer of 8-hydroxyqinoline: key role of the excitedstate hydrogen-bond strengthening. Spectrochimica Acta Part A 2015; 139: 49-53.
  • 57. Sun YX, Hao QL, Wei WX, Yu ZX, Lu LD et al. Experimental and density functional studies on 4-(3,4- dihydroxybenzylideneamino)antipyrine, and 4-(2,3,4-trihydroxybenzylideneamino)antipyrine. Journal of Molecular Structure: Theochem 2009; 904: 74-82.
  • 58. Andraud C, Brotin T, Garcia C, Pelle F, Goldner P et al. Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives. Journal of the American Chemical Society 1994; 116: 2094-2102.
  • 59. Geskin VM, Lambert C, Bredas JL. Origin of high second- and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions:? the remarkable role of polarized aromatic groups. Journal of the American Chemical Society 2003; 125: 15651-15658.
  • 60. Nakano M, Fujita H, Takahata M, Yamaguchi K. Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer:? toward an understanding of structure–property relation in NLO responses of fractal antenna dendrimers. Journal of the American Chemical Society 2002; 124: 9648-9655.
  • 61. Sajan D, Joe H, Jayakumar VS, Zaleski J. Structural and electronic contributions to hyperpolarizability in methyl p-hydroxy benzoate. Journal of Molecular Structure 2006; 785: 43-53.
  • 62. Zhang R, Du B, Sun G, Sun YX. Experimental and theoretical studies on o-, m- and p-chlorobenzylideneaminoantipyrines. Spectrochimica Acta Part A 2010; 75: 1115-1124.
  • 63. Kleinman DA. Nonlinear dielectric polarization in optical media. Physical Reviews 1962; 126: 1977-1979.
  • 64. Thanthiriwatte KS, Nalin de Silva KM. Non-linear optical properties of novel fluorenyl derivatives—ab initio quantum chemical calculations. Journal of Molecular Structure: Theochem 2002; 617: 169-175.
  • 65. Tanak H, Pawlus K, Marchewka MK, Pietraszko A. Structural, vibrational and theoretical studies of anilinium trichloroacetate: new hydrogen bonded molecular crystal with nonlinear optical properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014; 118: 82-93.
  • 66. Tanak H, Agar AA, Buyukgungor O. Experimental (XRD, FT-IR and UV–Vis) and theoretical modeling studies of Schiff base (E)-N′-((5-nitrothiophen-2-yl)methylene)-2-phenoxyaniline. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014; 118: 672-682.
  • 67. Tanak H. Molecular structure, spectroscopic (FT-IR and UV-Vis) and DFT quantum-chemical studies on 2-[(2,4- dimethylphenyl)iminomethyl]-6-methylphenol Molecular Physics 2014; 112: 1553-1565.