Synthesis of benzaldehyde by Swern oxidation of benzyl alcohol in a continuous ow microreactor system

Synthesis of benzaldehyde by Swern oxidation of benzyl alcohol in a continuous ow microreactor system

Preparation of benzaldehyde by Swern oxidation of benzyl alcohol was carried out in a continuous ow microreactor system. Dimethyl sulfoxide (Me 2 SO) was used as oxidizing agent and oxalyl chloride or p -toluenesulfonyl ( p -TsCl) chloride was used as the activating agent. Benzyl alcohol was oxidized to benzaldehyde by the Me 2 SO- activating agent mixture in the continuous ow microreactor system. The optimized reaction conditions of the Swern oxidation were as follows: oxalyl chloride was used as the activating agent; the mole ratio of Me 2 SO, oxalyl chloride, and benzyl alcohol was 4:2:1; the ow rate of Me 2 SO was 1.5 mL/min; the reaction temperature was 15 ◦ C; length of delay loop was 1.5 m; a Caterpillar Split-Recombine Micro Mixer was used; and all of the experiments were completed at atmospheric pressure. The yield of benzaldehyde can reach 84.7% with selectivity of 98.5%. Due to the small reactor volume and short residence times, the Swern oxidation of benzyl alcohol in a continuous ow microreactor system can be operated at nearly room temperature (5{19 ◦ C) instead of {70 ◦ C in a batch reaction, with residence time of reactants in microreactors in milliseconds instead of several hours in a batch reaction.

___

  • 1. . Chandler, W. D.; Wang, Z.; Lee, D. G. Can. J. Chem . 2005 , 83 , 1212-1221.
  • 2. Ara, B.; Shah, J.; Rasul J. M.; Muhammad, M. J. Saudi Chem. Soc. 2008 , 20 , S566-S572.
  • 3. Patel, S.; Mishra, B. K. Tetrahedron 2007 , 63 , 4367-4406.
  • 4. Basavaiah, D.; Kumaragurubaran, N.; Padmaja, K. Synlett 1999 , 1999 , 1630-1632.
  • 5. Garegg, P. J.; Olsson, L.; Oscarson, S. J. Org. Chem. 1995 , 60 , 2200-2204.
  • 6. Satam, V.; Harad, A.; Rajule, R; Pati, H. Tetrahedron 2010 , 66 , 7659-7706.
  • 7. Marek, A.; Klepetarova, B.; Elbert, T. Asian J. Org. Chem. 2015 , 4 , 808-817.
  • 8. Leduc, A. B.; Jamison, T. F. Org. Process Res. Dev. 2012 , 16 , 1082-1089.
  • 9. Han, M. K.; Kim, S.; Kim, S. T.; Lee, J. C. Synlett 2015 , 26 , 2434-2436.
  • 10. Saadati, F.; Youse , K. Synthetic Commun . 2014 , 44 , 2818-2825.
  • 11. van der Linden, J. J. M.; Hilberink, P. W.; Kronenburg, C. M. P.; Kemperman, G. J. Org. Process Res. Dev. 2008 , 12 , 911-920.
  • 12. Ideue, E.; Shimokawa, J.; Fukuyama, T. Org. Lett. 2015 , 17 , 4964-4967.
  • 13. Sweat, F. W.; Epstein, W. W. J. Org. Chem . 1967 , 32 , 835-838.
  • 14. Tsuchiya, D.; Moriyama, K.; Togo, H. Synlett 2011 , 2011 , 2701-2704.
  • 15. van den Broek, S.; Becker, R.; Koch, K.; Nieuwland, P. J. Micromachines 2012 , 3 , 244-254.
  • 16. Kawaguchi, T.; Miyata, H.; Ataka, K.; Mae, K.; Yoshida, J. Angew. Chem. Int. Ed . 2005 , 44 , 2413-2416.
  • 17. Mancuso, A. J.; Huang, S. L.; Swern, D. J. Org. Chem. 1978 , 43 , 2480-2482.
  • 18. Watts, P.; Wiles, C. J. Chem. Res. 2012 , 36 , 181-193.