Synthesis, crystal structure, and characterization of two heterometallic transition metal citrate complexes [M = Co(II) and Cd(II)]

Synthesis, crystal structure, and characterization of two heterometallic transition metal citrate complexes [M = Co(II) and Cd(II)]

In this study, two heterometallic transition metal complexes with the formulas [CoK4(µ10 -C6 H5 O7)2 ] n and[CdK(µ8 -C6 H5 O7)(µ-H2 O)(H2 O)] n were synthesized as crystalline compounds. The structures of these crystalline metal complexes were characterized by their spectral analyses (FT-IR, FT-Raman, thermal analysis, magnetic properties, and single-crystal X-ray diffraction techniques). According to the spectral data of the new metal complexes obtained, both metal complexes are in the monoclinic crystal system and in the P2 1 /c and P2 1 space groups, respectively. The asymmetric unit of the metal complex [CoK4(µ10 -C6 H5 O7)2 ] n contains one Co(II) ion, two potassium cations, and one (C6 H5 O7) citrate ligand, whereas that of the asymmetric unit of the metal complex [CdK(µ8 -C6 H5 O7)(µH2 O)(H2 O)] n contains one Cd(II) ion, one potassium cation, one (C6 H5 O7) citrate ligand, and two coordinated water molecules.

___

  • 1. Graham Solomons, T. W. Organic Chemistry (Special Topic M); John Wiley & Sons, Inc.: New York, NY, USA, 1996.
  • 2. Apelblat, A. Citric Acid; Springer International Publishing: Basel, Switzerland, 2014.
  • 3. Boling-Frankenbach, S. D.; Snow, J. L.; Parsons, C. M.; Baker, D. H. Poultry Sci . 2001, 80, 783-788.
  • 4. Badii, F.; Howell, N. K. J. Agric. Food Chem. 2002, 50, 2053-2061.
  • 5. Gul, Z.; Monga, M. Korean J. Urol. 2014, 55, 775-779.
  • 6. Islam, K. M. ; Schaeublin, H.; Wenk, C.; Wanner, M.; Liesegang, A. J. Anim. Physiol. Anim. Nutr. (Berl.) 2012, 96, 808-817.
  • 7. Penniston, K. L.; Nakada, S. Y.; Holmes, R. P.; Assimos, D. G. J. Endourol. 2008, 22, 567-570.
  • 8. Wuana, R. A.; Okiemen, F. E.; Imborvungu, J. A. Int. J. Environ. Sci. Tech. 2010, 7, 485-496.
  • 9. Kim, Y.; Koo, H. G.; Shin, D. H.; Park, L. O.; Lee, J. H. et al. J. Struct. Chem. 2010, 51, 382-385.
  • 10. Che, P.; Fang, D. Q.; Zhang, D. P.; Feng, J. J. Coord. Chem. 2005, 58, 1581-1588.
  • 11. Li, X. H.; Chen, W. L.; Wang, E. B. Acta Cryst. E 2009, 65, m183.
  • 12. Lin, W. C.; Guo, W. G.; Wang, L. H.; Ma, X. L.; Xiang, S. C. et al. Chinese Struct. Chem. 2014, 33, 591-596.
  • 13. Lensbouer, J. J.; Patel, A.; Sirianni, J. P.; Doyle, R. P. Am. Soc. Microbiol. 2008, 190, 5616-5623.
  • 14. Bickley, R. I.; Edwards, H. G. M.; Gustar, R.; Rose, S. J. J. Mol. Struct. 1991, 246, 217-228.
  • 15. Elbagerma, M. A.; Edwards, H. G. M.; Munshi, T.; Scowen, I. J. Cryst. Eng. Comm. 2011, 13, 1877-1884.
  • 16. Lin, H. L.; Hsu, P. C.; Lin, S. Y. Asian J. Pharm. Sci. 2013, 8, 19- 7.
  • 17. Ferreira, R. M.; Motta, M.; Batagin-Neto, A.; Frederico de Oliveira Graeff C.; Lisboa-Filho P. N. et al. Materials Research 2014, 17, 550-556.
  • 18. Bichara, L. C.; Lanús, H. E.; Ferrer, E. G.; Gramajo, M. B.; Brandan, S. A. Advances in Physical Chemistry 2011, 2011, 347072.
  • 19. Liu, S. J.; Zeng, Y. F.; Hu, X.; Xue, L.; Han, S. D. et al. J. Solid State Chem. 2013, 204, 197-204.
  • 20. Li, L.; Niu, S. Y.; Jin, J.; Meng, Q.; Chi, Y. X. et al. J. Solid State Chem. 2011, 184, 1279-1285.
  • 21. Liu, R. B.; Zhang, J. J.; Tong, B. Z. Anorg. Allg. Chem. 2011, 637, 269-273.
  • 22. Galloway, K. W.; Schmidtmann, M.; Sanchez-Benitez, J.; Kamenev, K. K.; Wernsdorfer, W. et al. Dalton Trans. 2010, 39, 4727-4729.
  • 23. Matzapetakis, M.; Dakanali, M.; Raptopoulou, C. P. J. Biol. Inorg. Chem. 2000, 5, 469-474.
  • 24. Zhou, Z. H.; Deng, Y. F.; Wan, H. L. Cryst. Growth Des. 2005, 5, 1109-1117.
  • 25. Deng, Y. F.; Zhou, Z. H. J. Coord. Chem. 2009, 62, 778-788.
  • 26. Xie, F. T.; Duan, L. M.; Chen, X. Y.; Cheng, P.; Xu, J. Q. et al. Inorg. Chem. Commun. 2005, 8, 274-277.
  • 27. Dai, Y. M.; Cheng, J. K.; Zhang, J. J. Mol. Struct. 2005, 740, 223-227.
  • 28. Guo, Y.; Lu, J.; Li, Y. J. Mol. Struct. 2006, 782, 44-48.
  • 29. Zhang, G.; Yang, G.; Ma, J. S. Cryst. Growth Des. 2006, 6, 375-381.
  • 30. Li, L.; Jin, J.; Shi, Z. L.; Zhao, L. Inorg. Chim. Acta 2010, 363, 748-754.
  • 31. Kefalas, E. T.; Dakanali, M.; Panagiotidis, P. Inorg. Chem. 2005, 44, 4818-4828.
  • 32. Tarakeshwar, P.; Manogaran, S. Spectrochim. Acta A 1994, 50, 2327-2343.
  • 33. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry; John Wiley & Sons, Inc.: New York, NY, USA, 2009.
  • 34. Smardzewski, R. R.; Andrews, L. J. Chem. Phys. 1972, 57, 1327-1333.
  • 35. de Paola, R. A.; Hoffmann, F. M. J. Chem. Phys. 1987, 87, 1361-1366.
  • 36. Eberhardt, W. (editor). Applications of Synchrotron Radiation: High-Resolution Studies of Molecules and Molecular Adsorbates on Surfaces; Springer Science & Business Media: Berlin, Germany, 2012.
  • 37. Sheldrick, G. M. Acta Cryst. 2008, A64, 112.
  • 38. Sheldrick, G. M. Acta Cryst. 2015, C71, 3.
  • 39. Bruker Inc. Bruker APEX2, (version 2014.11.0); Bruker AXS Inc.: Madison, WI, USA, 2014.
  • 40. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P. et al. J. Appl. Cryst. 2008, 41, 466-470.
  • 41. Farrugia, L. J. J. Appl. Cryst. 2012, 45, 849-854.