Selective modifications at the different positions of cyclodextrins: a review of strategies

Selective modifications at the different positions of cyclodextrins: a review of strategies

Cyclodextrins CDs are natural, nontoxic, and biodegradable macrocyclic oligosaccharides. As supramolecular hosts, CDs have numerous applications in many aspects. However, nonsubstituted CDs have the disadvantages of solubility, unspecific recognition sites, and weak interactions with guest molecules. Therefore, new CD-based derivatives are successfully designed, synthesized, and widely used in various fields. This contribution outlines the research progress in CD derivatives. In particular, this review emphasizes the synthesis and application of CDs modified through functionalization in definite positions, random substitution, and reconstruction of the skeleton. At the end of this review, a summary and future directions are presented.

___

  • 1. Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chemical Reviews 1998; 98: 1743-1754.
  • 2. Mura P. Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. Journal of Pharmaceutical and Biomedical Analysis 2014; 101: 238-250.
  • 3. Fourmentin S, Crini G, Lichtfouse E. Cyclodextrin Fundamentals, Reactivity and Analysis. Berlin, Germany: Springer, 2018.
  • 4. Crini G. Review: A history of cyclodextrins. Chemical Reviews 2014; 114: 10940-10975.
  • 5. Huang Z, Wu Q, Liu S, Liu T, Zhang B. A novel biodegradable β -cyclodextrin-based hydrogel for the removal of heavy metal ions. Carbohydrate Polymers 2013; 97: 496-501.
  • 6. Kurkov SV, Loftsson T. Cyclodextrins. International Journal of Pharmaceutics 2013; 453: 167-180.
  • 7. Schmidt BV, Hetzer M, Ritter H, Barner-Kowollik C. Complex macromolecular architecture design via cyclodextrin host/guest complexes. Progress in Polymer Science 2014; 39: 235-249.
  • 8. Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J. A review on the use of cyclodextrins in foods. Food Hydrocolloids 2009; 23: 1631-1640.
  • 9. Madene A, Jacquot M, Scher J, Desobry S. Flavour encapsulation and controlled release-a review. International Journal of Food Science & Technology 2006; 41: 1-21.
  • 10. Hsu CM, Yu SC, Tsai FJ, Tsai Y. Characterization of in vitro and in vivo bioactivity of a ferulic acid-2- Hydroxypropyl-β -cyclodextrin inclusion complex. Colloids and Surfaces B: Biointerfaces 2019; 180: 68-74.
  • 11. Hawkins MJ, Soon-Shiong P, Desai N. Protein nanoparticles as drug carriers in clinical medicine. Advanced Drug Delivery Reviews 2008; 60: 876-885.
  • 12. Liu P, Lin Y, Feng CH, Chen Y. Determination of hydroxy acids in cosmetics by chemometric experimental design and cyclodextrin-modified capillary electrophoresis. Electrophoresis 2012; 33: 3079-3086.
  • 13. Mori T, Tsuchiya R, Doi M, Nagatani N, Tanaka T. Solubilization of ultraviolet absorbers by cyclodextrin and their potential application in cosmetics. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2019; 93: 91-96.
  • 14. Szejtli J. Cyclodextrins in Foods, Cosmetics and Toiletries. Cyclodextrin Technology. Dordrecht, the Netherlands: Springer, 1982.
  • 15. Morin-Crini N, Loiacono S, Placet V, Torri G, Bradu C et al. Hemp-based adsorbents for sequestration of metals: a review. Environmental Chemistry Letters 2019; 17: 393-408.
  • 16. Chen G, Jiang M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chemical Society Reviews 2011; 40: 2254-2266.
  • 17. Cremer PS, Flood AH, Gibb BC, Mobley DL. Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry. Nature Chemistry 2017; 10: 8-16.
  • 18. Harada A, Takashima Y, Yamaguchi H. Cyclodextrin-based supramolecular polymers. Chemical Society Reviews 2009; 38: 875-882.
  • 19. Gupta A, Khare SK. Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology. Critical Reviews in Biotechnology 2009; 29: 44-54.
  • 20. Otero C, Cruzado C, Ballesteros A. Use of cyclodextrins in enzymology to enhance the solubility of hydrophobic compounds in water. Applied Biochemistry and Biotechnology 1991; 27: 185-194.
  • 21. Xiao Y, Ng SC, Tan TTY, Wang Y. Recent development of cyclodextrin chiral stationary phases and their applications in chromatography. Journal of Chromatography A 2012; 1269: 52-68.
  • 22. Armstrong DW, Stalcup AM, Hilton ML, Duncan JD, Faulkner JR et al. Derivatized cyclodextrins for normalphase liquid chromatographic separation of enantiomers. Analytical Chemistry 1990; 62: 1610-1615.
  • 23. Tian BR, Zhang RX, Chu HM, Huang Q, Wang ZZ. Preparation of α-hydroxyphenylacetic acid with cyclodextrins as an effective phase-transfer catalyst and its reaction mechanism. Turkish Journal of Chemistry 2019; 43: 359-368.
  • 24. Brown CJ, Toste FD, Bergman RG, Raymond KN. Supramolecular catalysis in metal-ligand cluster hosts. Chemical Reviews 2015; 115: 3012-3035.
  • 25. Menuel S, Léger B, Addad A, Monflier E, Hapiot F. Cyclodextrins as effective additives in AuNP-catalyzed reduction of nitrobenzene derivatives in a ball-mill. Green Chemistry 2016; 18: 5500-5509.
  • 26. Sadjadi S, Heravi MM, Daraie M. Cyclodextrin nanosponges: a potential catalyst and catalyst support for synthesis of xanthenes. Research on Chemical Intermediates 2017; 43: 843-857.
  • 27. Zhang Q, Elemans JAAW, White PB, Nolte RJM. A manganese porphyrin-α-cyclodextrin conjugate as an artificial enzyme for the catalytic epoxidation of polybutadiene. Chemical Communications 2018; 54: 5586-5589.
  • 28. Cousin H, Trapp O, Peulon-Agasse V, Pannecoucke X, Banspach L et al. Synthesis, NMR spectroscopic characterization and polysiloxane-based immobilization of the three regioisomeric monooctenylpermethyl-β -cyclodextrins and their application in enantioselective GC. European Journal of Organic Chemistry 2003; 2003: 3273-3287.
  • 29. Nishimura S, Kohgo O, Kurita K, Kuzuhara H. Chemospecific manipulations of a rigid polysaccharide: syntheses of novel chitosan derivatives with excellent solubility in common organic solvents by regioselective chemical modifications. Macromolecules 1991; 24: 4745-4748.
  • 30. Řezanka M. Synthesis of substituted cyclodextrins. Environmental Chemistry Letters 2019; 17: 49-63.
  • 31. Tian S, Zhu H, Forgo P, D’Souza VT. Selectively monomodified cyclodextrins. Synthetic strategies. Journal of Organic Chemistry 2000; 65: 2624-2630.
  • 32. Wang X, Fan H, Zhang F, Qi Y, Qiu W et al. Synthesis of a β -cyclodextrin derivate and its molecular recognition behavior on modified glassy carbon electrode by diazotization. Tetrahedron 2010; 66: 7815-7820.
  • 33. Khan AR, Forgo P, Stine KJ, D’Souza VT. Methods for selective modifications of cyclodextrins. Chemical Reviews 1998; 98: 1977-1996.
  • 34. Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. International Journal of Pharmaceutics 2007; 329: 1-11.
  • 35. Szejtli J. Utilization of cyclodextrins in industrial products and processes. Journal of Materials Chemistry 1997; 7: 575-587.
  • 36. Chen G, Jiang M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chemical Society Reviews 2011; 40: 2254-2266.
  • 37. Tan S, Ladewig K, Fu Q, Blencowe A, Qiao GG. Cyclodextrin-based supramolecular assemblies and hydrogels: recent advances and future perspectives. Macromolecular Rapid Communications 2014; 35: 1166-1184.
  • 38. Hu J, Liu S. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications. Accounts of Chemical Research 2014; 47: 2084-2095.
  • 39. Schmidt BVKJ, Barner-Kowollik C. Dynamic macromolecular material design-the versatility of cyclodextrin-based host-guest chemistry. Angewandte Chemie International Edition 2017; 56: 8350-8369.
  • 40. Xu C, Wu Y, Li Z, Loh XJ. Cyclodextrin-based sustained gene release systems: a supramolecular solution towards clinical applications. Materials Chemistry Frontiers 2019; 3: 181-192.
  • 41. Yadav VR, Prasad S, Kannappan R, Ravindran J, Chaturvedi MM et al. Cyclodextrin-complexed curcumin exhibits anti-inflammatory and antiproliferative activities superior to those of curcumin through higher cellular uptake. Biochemical Pharmacology 2010; 80: 1021-1032.
  • 42. Magnolim CS, Moriwaki C, Nogueira AC, Sato F, Baesso ML et al. Curcumin-β -cyclodextrin inclusion complex: stability, solubility, characterization by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chemistry 2014; 153: 361-370.
  • 43. Dandawate PR, Vyas A, Ahmad A, Banerjee S, Deshpande J et al. Inclusion complex of novel curcumin analogue CDF and β -cyclodextrin (1: 2) and its enhanced in vivo anticancer activity against pancreatic cancer. Pharmaceutical Research 2012; 29: 1775-1786.
  • 44. Dong L, Liu M, Chen A, Wang Y, Sun D. Solubilities of quercetin in three β -cyclodextrin derivative solutions at different temperatures. Journal of Molecular Liquids 2013; 177: 204-208.
  • 45. Wenz G. Cyclodextrins as building blocks for supramolecular structures and functional units. Angewandte Chemie International Edition 1994; 33: 803-822.
  • 46. Luo X, Morrin A, Killard AJ, Smyth MR. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 2006; 18: 319-326.
  • 47. Arslan M, Sayin S, Yilmaz M. Enantioselective sorption of some chiral carboxylic acids by various cyclodextringrafted iron oxide magnetic nanoparticles. Tetrahedron Asymmetry 2013; 24: 982-989.
  • 48. Li S, Taura D, Hashidzume A, Takashima Y, Yamaguchi H et al. Photocontrolled size changes of doubly-threaded dimer based on an α-cyclodextrin derivative with two recognition sites. Chemistry Letters 2010; 39: 242-243.
  • 49. Casas-Solvas JM, Vargas-Berenguel A. Synthesis of a β -cyclodextrin derivative bearing an azobenzene group on the secondary face. Tetrahedron Letters 2008; 49: 6778-6780.
  • 50. Pitha J, Harman SM, Michel ME. Hydrophilic cyclodextrin derivatives enable effective oral administration of steroidal hormones. Journal of Pharmaceutical Sciences 1986; 75: 165-167.
  • 51. Zhao M, Hao A, Li J, Wei Y, Guo P. New cyclomaltoheptaose (β -cyclodextrin) derivative 2-O-(2-hydroxybutyl) cyclomaltoheptaose: preparation and its application for the separation of enantiomers of drugs by capillary electrophoresis. Carbohydrate Research 2005; 340: 1563-1565.
  • 52. Zheng L, Xiong L, Li J, Li X, Sun J et al. Synthesis of a novel β -cyclodextrin derivative with high solubility and the electrochemical properties of ferrocene-carbonyl-β -cyclodextrin inclusion complex as an electron transfer mediator. Electrochemistry Communications 2008; 10: 340-345.
  • 53. Liu Y, You C, Zhang H, Zhao Y. Enantioselective recognition of aliphatic amino acids by β -cyclodextrin derivatives bearing aromatic organoselenium moieties on the primary or secondary side. European Journal of Organic Chemistry 2003; 2003: 1415-1422.
  • 54. Masurier N, Lafont O, Le Provost R, Lesur D, Masson P et al. Regioselective access to 3I-O-substituted-β - cyclodextrin derivatives. Chemical Communications 2009; 2009: 589-591.
  • 55. Zgani I, Idriss H, Barbot C, Djedaïni-Pilard F, Petit S et al. Positive variation of the MRI signal via intramolecular inclusion complexation of a C-2 functionalized β -cyclodextrin. Organic & Biomolecular Chemistry 2017; 15: 564- 569.
  • 56. Suzuki I, Ueno A, Osa T. Marked differences in molecular association behavior between two regioisomers of γ - cyclodextrin derivatives bearing a pyrenecarbonyl moiety at C-2 and C-3. Chemistry Letters 1989; 18: 2013-2016.
  • 57. Fujita K, Tahara T, Imoto T, Koga T. Regiospecific sulfonation onto C-3 hydroxyls of beta-cyclodextrin. Preparation and enzyme-based structural assignment of 3A,3C and 3A3D disulfonates. Journal of the American Chemical Society 1986; 108: 2030-2034.
  • 58. Tian S, Forgo P, D’Souza VT. Selective modification at the 3-position of β -cyclodextrin. Tetrahedron Letters 1996; 37: 8309-8312.
  • 59. Yuan D, Tahara T, Chen W, Okabe Y, Yang C et al. Functionalization of cyclodextrins via reactions of 2,3- anhydrocyclodextrins. Journal of Organic Chemistry 2003; 68: 9456-9466.
  • 60. Miyawaki A, Takashima Y, Yamaguchi H, Harada A. Branched supramolecular polymers formed by bifunctional cyclodextrin derivatives. Tetrahedron 2008; 64: 8355-8361.
  • 61. Jindřich J, Tišlerová I. Simple preparation of 3’-O-substituted β -cyclodextrin derivatives using cinnamyl bromide. Journal of Organic Chemistry 2005; 70: 9054-9055.
  • 62. Kordopati GG, Tsivgoulis GM. Amino cyclodextrin per-O-methylation: synthesis of 3-monoamino-permethylated derivatives. Tetrahedron Letters 2018; 59: 2447-2449.
  • 63. Martina K, Trotta F, Robaldo B, Belliardi N, Jicsinszky L et al. Efficient regioselective functionalizations of cyclodextrins carried out under microwaves or power ultrasound. Tetrahedron Letters 2007; 48: 9185-9189.
  • 64. Sallas F, Leroy P, Marsura A, Nicolas A. First selective synthesis of thio-β -cyclodextrin derivatives by a direct Mitsunobu reaction on free β -cyclodextrin. Tetrahedron Letters 1994; 35: 6079-6082.
  • 65. Delahousse G, Peulon-Agasse V, Debray J, Vaccaro M, Cravotto G et al. The incorporation of calix[6]arene and cyclodextrin derivatives into sol-gels for the preparation of stationary phases for gas chromatography. Journal of Chromatography A 2013; 1318: 207-216.
  • 66. Mayer S, Schurig V. Enantiomer separation using mobile and immobile cyclodextrin derivatives with electromigration. Electrophoresis 1994; 15: 835-841.
  • 67. Wang R, Ong T, Ng SC. Chemically bonded cationic β -cyclodextrin derivatives and their applications in supercritical fluid chromatography. Journal of Chromatography A 2012; 1224: 97-103.
  • 68. Wang R, Ong T, Ng SC. Chemically bonded cationic β -cyclodextrin derivatives as chiral stationary phases for enantioseparation applications. Tetrahedron Letters 2012; 53: 2312-2315.
  • 69. Wang Y, Xiao Y, Tan TTY, Ng SC. Click chemistry for facile immobilization of cyclodextrin derivatives onto silica as chiral stationary phases. Tetrahedron Letters 2008; 49: 5190-5191.
  • 70. Oshikiri T, Takashima Y, Yamaguchi H, Harada A. Kinetic control of threading of cyclodextrins onto axle molecules. Journal of the American Chemical Society 2005; 127: 12186-12817.
  • 71. Oshikiri T, Takashima Y, Yamaguchi H, Harada A. Face-selective [2]- and [3]rotaxanes: kinetic control of the threading direction of cyclodextrins. Chemistry-A European Journal 2007; 13: 7091-7098.
  • 72. Wang Z, Takashima Y, Yamaguchi H, Harada A. Photoresponsive formation of pseudo[2]rotaxane with cyclodextrin derivatives. Organic Letters 2011; 13: 4356-4359.
  • 73. Lopez OL, Marinescu L, Bols M. New cup-shaped α-cyclodextrin derivatives and a study of their catalytic properties in oxidation reactions. Tetrahedron 2007; 63: 8872-8880.
  • 74. Le HT, Jeon HM, Lim CW, Kim TW. 6-Triazolyl-6-deoxy-β -cyclodextrin derivatives: synthesis, cellular toxicity, and phase-solubility study. Carbohydrate Research 2014; 391: 22-28.
  • 75. Stepniak P, Lainer B, Chmurski K, Jurczak J. The effect of urea moiety in amino acid binding by β -cyclodextrin derivatives: a 1000-fold increase in efficacy comparing to native β -cyclodextrin. Carbohydrate Polymers 2017; 164: 233-241.
  • 76. Hardy A, Seguin C, Brion A, Lavalle P, Schaaf P et al. β -Cyclodextrin-functionalized chitosan/alginate compact polyelectrolyte complexes (CoPECs) as functional biomaterials with anti-inflammatory properties. ACS Applied Materials & Interfaces 2018; 10: 29347-29356.
  • 77. Yoon J, Hong S, Martin KA, Czarnik AW. A general method for the synthesis of cyclodextrinyl aldehydes and carboxylic acids. Journal of Organic Chemistry 1995; 60: 2792-2795.
  • 78. Fabio GD, Malgieri G, Isernia C, D’Onofrio J, Gaglione M et al. A novel synthetic strategy for monosubstituted cyclodextrin derivatives. Chemical Communications 2012; 48: 3875-3877.
  • 79. Li X, Zhou Z, Xu D, Zhang J. Enantiomeric separation in high-performance liquid chromatography using novel β -cyclodextrin derivatives modified by R-configuration groups as chiral stationary phases. Talanta 2011; 84: 1080- 1092.
  • 80. Li Y, Song C, Zhang L, Zhang W, Fu H. Fabrication and evaluation of chiral monolithic column modified by β -cyclodextrin derivatives. Talanta 2010; 80: 1378-1384.
  • 81. Zeng J, Huang H, Liu S, Xu H, Huang J et al. Hollow nanosphere fabricated from β -cyclodextrin-grafted α,β - poly(aspartic acid) as the carrier of camptothecin. Colloids and Surfaces B 2013; 105: 120-127.
  • 82. Shukla A, Singh AP, Ray B, Aswal V, Kar AG et al. Efficacy of polyurethane graft on cyclodextrin to control drug release for tumor treatment. Journal of Colloid and Interface Science 2019; 534: 215-227.
  • 83. Karginov VA, Nestorovich EM, Schmidtmann F, Robinson TM, Yohannes A et al. Inhibition of S. aureus αhemolysin and B. anthracis lethal toxin by β -cyclodextrin derivatives. Bioorganic & Medicinal Chemistry 2007; 15: 5424-5431.
  • 84. Liu Y, Zhao Y, Chen Y, Liang P, Li L. A water-soluble β -cyclodextrin derivative possessing a fullerene tether as an efficient photodriven DNA-cleavage reagent. Tetrahedron Letters 2005; 46: 2507-2511.
  • 85. Liu Y, Kang S, Zhang H. Synthesis of β -cyclodextrin derivative bearing a cyclohexylamino moiety and its inclusion complexation with organic dye molecules. Microchemical Journal 2001; 70: 115-121.
  • 86. Liu Y, You C, Wada T, Inoue Y. Molecular recognition studies on supramolecular systems. 22. Size, shape, and chiral recognition of aliphatic alcohols by organoselenium-modified cyclodextrins. Journal of Organic Chemistry 1999; 64: 3630-3634.
  • 87. Liu Y, Li B, Wada T, Inoue Y. Enantioselective recognition of aliphatic amino acids by organoselenium modified β -cyclodextrins. Supramolecular Chemistry 1999; 10: 173-184.
  • 88. Liu Y, Shi J, Guo D. Novel permethylated β -cyclodextrin derivatives appended with chromophores as efficient fluorescent sensors for the molecular recognition of bile salts. Journal of Organic Chemistry 2007; 72: 8227-8234.
  • 89. Liu Y, Kang S, Li L. Synthesis of novel β -cyclodextrin derivatives bearing a 1-naphthyloxamino-oligo(ethyleneamino) moiety and their inclusion complexation with some fluorescent dyes. Supramolecular Chemistry 2002; 14: 329-337.
  • 90. Martina K, Caporaso M, Tagliapietra S, Heropoulos G, Rosati O et al. Synthesis of water-soluble multidentate aminoalcohol β -cyclodextrin derivatives via epoxide opening. Carbohydrate Research 2011; 346: 2677-2682.
  • 91. Grasso GI, Bellia F, Arena G, Vecchio G, Rizzarelli E. Noncovalent interaction-driven stereoselectivity of copper(II) complexes with cyclodextrin derivatives of L- and D-carnosine. Inorganic Chemistry 2011; 50: 4917-4924.
  • 92. Yang B, Zhao Y, Yang X, Liao X, Yang J et al. Scutellarin-cyclodextrin conjugates: Synthesis, characterization and anticancer activity. Carbohydrate Polymers 2013; 92: 1308-1314.
  • 93. Li Y, Ha Y, Guo Q, Li Q. Synthesis of two β -cyclodextrin derivatives containing a vinyl group. Carbohydrate Research 2015; 404: 55-62.
  • 94. Moutard S, Djedaïni-Pilard F, Meudal S, Luijten W, Perly B et al. Structural identification of new glycolipids based on cyclodextrin using high-resolution positive and negative electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry 2003; 17: 2535-2540.
  • 95. Bjerre J, Hauch Fenger T, Marinescu LG, Bols M. Synthesis of some trifluoromethylated cyclodextrin derivatives and analysis of their properties as artificial glycosidases and oxidases. European Journal of Organic Chemistry 2007; 2007: 704-710.
  • 96. Takenaka Y, Nakashima H, Yoshida N. Fluorescent amino-β -cyclodextrin derivative as a receptor for various types of alcohols having cyclic and macrocyclic rings. Journal of Molecular Structure 2007; 871: 149-155.
  • 97. Wang R, Ong T, Ng SC. Chemically bonded cationic β -cyclodextrin derivatives and their applications in supercritical fluid chromatography. Journal of Chromatography A 2012; 1224: 97-103.
  • 98. Zhang X, Sasaki K, Kuroda Y. Syntheses and photophysical studies of cyclodextrin derivatives with two proximate anthracenyl groups. Journal of Organic Chemistry 2006; 71: 4872-4877.
  • 99. Casas-Solvas JM, Martos-Maldonado MC, Vargas-Berenguel A. Synthesis of β -cyclodextrin derivatives functionalized with azobenzene. Tetrahedron 2008; 64: 10919-10923.
  • 100. Alvarez-Dorta D, León EI, Kennedy AR, Martín A, Pérez-Martín I et al. Easy access to modified cyclodextrins by an intramolecular radical approach. Angewandte Chemie International Edition 2015; 54: 3674-3678.
  • 101. Fujita K, Tahara T, Nagamura S, Imoto T, Koga T. Synthesis of specifically modified maltooligosaccharides by enzymic degradation of cyclodextrin derivatives. Substrate-based investigation of the active site of Taka-amylase. Journal of Organic Chemistry 1987; 52: 636-640.
  • 102. Xiao S, Yang M, Yu F, Zhang L, Zhou D et al. Synthesis of four mono-functionalized α-cyclodextrin derivatives for further confirming DIBAL-H-promoted bis-de-O-methylation mechanism. Tetrahedron 2013; 69: 4053-4060.
  • 103. Boger J, Corcoran RJ, Lehn J. Cyclodextrin chemistry. Selective modification of all primary hydroxyl groups of α- and β -cyclodextrins. Helvetica Chimica Acta 1978; 61: 2190-2218.
  • 104. Zhou J, Zeng Z. Novel fiber coated with β -cyclodextrin derivatives used for headspace solid-phase microextraction of ephedrine and methamphetamine in human urine. Analytica Chimica Acta 2006; 556: 400-406.
  • 105. Baudin C, Tardy F, Dalbiez J, Jankowski C, Fajolles C et al. Ionic complexation properties of per(3,6-anhydro) cyclodextrin derivatives towards lanthanides. Carbohydrate Research 2005; 340: 131-138.
  • 106. Bicchi C, Artuffo G, D’Amato A, Manzin V, Galli A et al. Cyclodextrin derivatives in the GC separation of racemic mixtures of volatile compounds, Part V: Heptakis 2,6-dimethyl-3-pentyl-β -cyclodextrins. Journal of High Resolution Chromatography 1992; 15: 710-714.
  • 107. Junge M, König WA. Selectivity tuning of cyclodextrin derivatives by specific substitution. Journal of Separation Science 2003; 26: 1607-1614. 108. Ma D, Zhang Y, Xu J. The synthesis and process optimization of sulfobutyl ether β -cyclodextrin derivatives. Tetrahedron 2016, 72: 3105-3112.
  • 109. Zhang L, Zhang Z, Li N, Wang N, Wang Y et al. Synthesis and evaluation of a novel β -cyclodextrin derivative for oral insulin delivery and absorption. International Journal of Biological Macromolecules 2013; 61: 494-500.
  • 110. Berthod A, Li WY, Armstrong DW. Chiral recognition of racemic sugars by polar and nonpolar cyclodextrinderivative gas chromatography. Carbohydrate Research 1990; 201: 175-184.
  • 111. Zhong Q, He L, Beesley TE, Trahanovsky WS, Sun P et al. Development of dinitrophenylated cyclodextrin derivatives for enhanced enantiomeric separations by high-performance liquid chromatography. Journal of Chromatography A 2006; 1115: 19-45.
  • 112. Cucinotta V, Giuffrida A, Grasso G, Maccarrone G, Vecchio G. Hemispherodextrins, a new class of cyclodextrin derivatives, in capillary electrophoresis. Journal of Chromatography A 2001; 916: 61-64.
  • 113. Tanaka Y, Yanagawa M, Terabe S. Separation of neutral and basic enantiomers by cyclodextrin electrokinetic chromatography using anionic cyclodextrin derivatives as chiral pseudo-stationary phases. Journal of High Resolution Chromatography 1996; 19: 421-433.
  • 114. Zhou C, Deng J, Shi G, Zhou T. β -Cyclodextrin-ionic liquid polymer based dynamically coating for simultaneous determination of tetracyclines by capillary electrophoresis. Electrophoresis 2017; 38: 1060-1067.
  • 115. Xu X, Bao X, Dong X, Shi Z, Yu Z et al. Chiral separation of 2,3-allenoic acid by capillary zone electrophoresis using cyclodextrin derivatives. Chirality 2003; 15: 201-205.
  • 116. Issaraseriruk N, Sritana-Anant Y, Shitangkoon A. Substituent effects on chiral resolutions of derivatized 1- phenylalkylamines by heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)-β -cyclodextrin GC stationary phase. Chirality 2018; 30: 900-906.
  • 117. Cheng JG, Tian BR, Huang Q, Ge HR, Wang ZZ. Resveratrol Functionalized carboxymethyl-β -cyclodextrin: synthesis, characterization, and photostability. Journal of Chemistry 2018; 2018: 1-7.
  • 118. Pitha J, Mallis LM, Lamb DJ, Irie T, Uekama K. Cyclodextrin sulfates: characterization as polydisperse and amorphous mixtures. Pharmaceutical Research 1991; 8: 1151-1154.
  • 119. Shao Z, Li Y, Chermak T, Mitra AK. Cyclodextrins as mucosal absorption promoters of insulin. II. Effects of β - cyclodextrin derivatives on α-chymotryptic degradation and enteral absorption of insulin in rats. Pharmaceutical Research 1994; 11: 1174-1179.
  • 120. Cheng J, Hu Y, Luo Z, Chen W, Chen H et al. Preparation and properties of octenyl succinate β -cyclodextrin and its application as an emulsion stabilizer. Food Chemistry 2017; 218: 116-121.
  • 121. Kida T, Kikuzawa A, Higashimoto H, Nakatsuji Y, Akashi M. Synthesis of novel cyclodextrin derivatives by aromatic spacer insertion and their inclusion ability. Tetrahedron 2005; 61: 5763-5768.
  • 122. Kida T, Kikuzawa A, Nakatsuji Y, Akashi M. A facile synthesis of novel cyclodextrin derivatives incorporating one β -(1,4)-glucosidic bond and their unique inclusion ability. Chemical Communications 2003; 2003: 3020-3021.
  • 123. Kida T, Michinobu T, Zhang W, Nakatsuji Y, Ikeda I. A facile synthesis of novel types of cyclodextrin derivatives by insertion of an aromatic dicarbonyl spacer into a permethylated α-cyclodextrin skeleton. Chemical Communications 2002; 2002: 1596-1597.
  • 124. Kikuzawa A, Kida T, Nakatsuji Y, Akashi M. Short synthesis of skeleton-modified cyclodextrin derivatives with unique inclusion ability. Journal of Organic Chemistry 2005; 70: 1253-1261.
  • 125. Kikuzawa A, Kida T, Akashi M. Synthesis of stimuli-responsive cyclodextrin derivatives and their inclusion ability control by ring opening and closing reactions. Organic Letters 2007; 9: 3909-3912.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK