Role of Tridentate Schiff Base and Methoxyethylindenyl Derivatives of Lanthanocene Complexes for the Synthesis of High Molecular Weight Polymethyl Methacrylate (PMMA)
Different mixed ligand lanthanocene complexes along with Al(i-Bu)3 are capable of synthesizing partially syndiotactic high molecular weight polymethylmethacrylate. The Schiff base derivative of mixed ligand lanthanocene complexes (1-4) showed better efficiency (Mv = 227 \times 103-354 \times 103) compared to the methoxyethylindenyl derivative of mixed ligand lanthanocene complexes (5-9) (Mv = 72 \times 103, 172 \times 103). The effects of the catalyst, temperature, catalyst/MMA molar ratio, and catalyst/Al(i-Bu)3 molar ratio on the polymerization of MMA at 60 °C suggested that ligand size and radius of rare earth metals play an important role in determining the activity of the catalyst.
Role of Tridentate Schiff Base and Methoxyethylindenyl Derivatives of Lanthanocene Complexes for the Synthesis of High Molecular Weight Polymethyl Methacrylate (PMMA)
Different mixed ligand lanthanocene complexes along with Al(i-Bu)3 are capable of synthesizing partially syndiotactic high molecular weight polymethylmethacrylate. The Schiff base derivative of mixed ligand lanthanocene complexes (1-4) showed better efficiency (Mv = 227 \times 103-354 \times 103) compared to the methoxyethylindenyl derivative of mixed ligand lanthanocene complexes (5-9) (Mv = 72 \times 103, 172 \times 103). The effects of the catalyst, temperature, catalyst/MMA molar ratio, and catalyst/Al(i-Bu)3 molar ratio on the polymerization of MMA at 60 °C suggested that ligand size and radius of rare earth metals play an important role in determining the activity of the catalyst.
___
- S.L. Kapur and A.B. Deshpande, J. Sint. Ind. Res. 31, 254-257 (1972).
- A. Akimoto, J. Polym. Sci. (Polym. Chem.) 10, 3113-3116 (1972).
- N. Koide, K. Imura and M. Pakeda, Macromol. Sci. Chem. 9, 961-63 (1975).
- S. Nakahama and A. Hirao, Prog. Polym. Sci. 15, 299-302 (1990).
- T. Alda, Y. Machawa, S. Asan o an d S. In oue, Macromolecules 21, 1195-1197 (1988).
- K. Kojima, M. Sawamoto and T. Higashimura, Macromolecules 21, 1552-1554 (1989).
- W.O. Webster, W.R. Hertler, D.Y. Sofah, W.B. Faranham and V. Rajom Babu, J. Am. Chem. Soc. 105, 9 (1986).
- J. Fujimuri, T. Masuda and T. Higashimura, Macromolecules 22, 3804-3806 (1989).
- Z. Wang, W. Wang, L. Lin and Z.Q. Shen, J. Zhejiang University (Natural Sci.) 25, 114-116 (1991).
- W. Hu, J. Sun , Z. Pan , Z. Wu an d Y. Xu, J. Zhejiang University (Natural Sci) 1, 157-161 (2000).
- J.F. Liu, J.Q. Sun and Z.Q. Shen, Chem. Res. Chin. Univ. (P.R. China) 9, 148-151 (1993).
- H. Yasuda, H. Yamamoto, M. Yamashita, K. Yakata, S. Miyake, Y. Kai and N. Kenehisa, Macromol. Chem. , 7134-137 (1993).
- H. Yasuda, E. Ihara, T. Hayahawa and T. Kakaehi, J. Molecul. Sci. (Pure Applied Chem.), 34, 1929-32 (1997).
- R.D. Jones, D.A. Summerville and F. Basalo, Chem. Rev. 79, 139-159 (1979).
- G. Henrici-Olive and S. Olive, “The Chemistry of the Catalyzed Hydrogenation of Carbon Monox- ide”, 3 rd ed, Springer Press, Berlin, 1983.
- M. Yousaf, Y. Qianand M.K. Saeed, Pak. J. Sci. Ind. Res. 48, 81-85 (2005).
- M. Yousaf, Q. Liu, J. Huang and Y. Qian, Chinese J. Chemistry 18, 740-744 (2000).
- R.E. Maggin, S. Manostyrskyj and M. Dubeck, J. Am. Chem. Soc. 85, 672-674 (1963).
- H.J. Canton and Z.G. Meyerhoff, Electrochemistry 56, 904-940 (1952).
- Z. Pan, J. Sun and S. Yang, J. Zhejiang University (Natural Sci.) 1, 20-26 (2000).
- F.Y. Li, D.G. Ward, S.S. Reddy and S. Collins, Macromolecules 30, 1875-1878 (1997).