Phosphorus-nitrogen compounds- Part 50 : correlations between structural parameters for cylophosphazene derivatives containing ferrocenyl pendant arm s

The results of a systematic study of spiro-cyclotri/tetraphosphazenes with ferrocenyl pendant arm on the basis of correlation between structural parameters were presented. The main parameters were obtained from Xray crystallography and 31 P NMR results in order to investigate the relationship between the δ P$_{spiro}$ shift values and endocyclic and exocyclic NPN bond angles, and electron density transfer parameters. Structural parameters derived from 11 types of the ferrocenyl cyclophosphazene derivatives with 5- to 7-membered spiro-rings introduced to the literature from our research group were studied and compared with each other.

___

  • 1. Allcock HR. Recent advances in phosphazene (phosphonitrilic) chemistry. Chemical Reviews 1972; 4: 315-356.
  • 2. Chandrasekhar V, Chakraborr A. Phosphazenes. In: Allen DW, Loakes D, Tebby JC (editors). Organophosphorus Chemistry. Vol. 48. London, UK: Royal Sciety of Chemistry (RSC) Publishing, 2019, pp. 400-423.
  • 3. Kumar D, Singh J, Elias AJ. Chiral multidentate oxazoline ligands based on cyclophosphazene cores: synthesis, characterization and complexation studies. Dalton Transactions 2014; 43: 13899-13912.
  • 4. Chandrasekhar V, Krishnan V. Advances in the chemistry of cyclophosphazenes. Advances in Inorganic Chemistry 2002; 53: 159-211.
  • 5. Mutlu G, Elmas G, Kılıç Z, Hökelek T, Koç LY et al. Phosphorus-nitrogen compounds: Part 31. Syntheses, structural and stereogenic properties, in vitro cytotoxic and antimicrobial activities, DNA interactions of novel bicyclotetraphosphazenes containing bulky side group. Inorganica Chimica Acta 2015; 436: 69-81.
  • 6. Elmas G. The reactions of 2-trans-6-bis(4-?uorobenzyl)spirocyclotetraphosphazene with primary amines: Spectroscopic and crystallographic characterizations. Phosphorus, Sulfur, and Silicon and the Related Elements 2017; 192: 1224-1232.
  • 7. Stewart FF. Phosphazenes. In: Allen DW, Loakes D, Tebby JC (editors). Organophosphorus Chemistry. Vol. 44. London, UK: Royal Sciety of Chemistry (RSC) Publishing, 2015, pp. 397-430.
  • 8. Gleria, M, De Jaeger R (editors). Phosphazenes: A Worldwide Insight. New York, NY, USA: Nova Science Publishers, Inc., 2004.
  • 9. Başterzi NS, Bilge Koçak S, Okumuş A, Kılıç Z, Hökelek T et al. Syntheses, structural characterization and biological activities of spiro-ansa-spiro-cyclotriphosphazenes. New Journal of Chemistry 2015; 39: 8825-8839.
  • 10. Elmas G, Okumuş A, Kılıç Z, Çam M, Açık L et al. Phosphorus-nitrogen compounds. Part 40. The syntheses of (4-fluorobenzyl) pendant armed cyclotetraphosphazene derivatives: Spectroscopic, crystallographic and stereogenic properties, DNA interactions and antimicrobial activities. Inorganica Chimica Acta 2018; 476: 110-122.
  • 11. Kumar D, Singh N, Keshav K, Elias AJ. Ring-closing metathesis reactions of terminal alkene-derived cyclic phosphazenes. Inorganic Chemistry 2011; 50; 250-260.
  • 12. Nataro C, Myer CN, Cleaver WM, Allen CW. Synthesis and characterization of ferrocenylalcohol derivatives of hexachlorocyclotri phosphazene. X-ray crystal structure of N3P3 Cl 5 OCH2 C5 H4FeCp. Journal of Organometallic Chemistry 2001; 637-639: 284-290.
  • 13. Myer CM, Allen CW. N-(Ferrocenylmethyl)-N-methylaminocyclotri phosphazenes. Inorganic Chemistry 2002; 41: 60-66.
  • 14. Muralidharan K, Elias AJ. Preparation of the first examples of ansa-spiro substituted fluorophosphazenes and their structural studies: Analysis of C-H· · · F-P weak interactions in substituted fluorophosphazenes. Inorganic Chemistry 2003; 42: 7535-7543.
  • 15. Asmafiliz N. Syntheses of chiral phosphazenes with stereogenic centers: NMR behavior in the presence of a chiral solvating agent. Heteroatom Chemistry 2014; 25: 83-94.
  • 16. Binici A, Okumuş A, Elmas G, Kılıç Z, Ramazanog^lu N et al. Phosphorus-nitrogen compounds. Part 42. The comparative syntheses of 2-cis-4-ansa(N/O) and spiro(N/O) cyclotetraphosphazene derivatives: spectroscopic and crystallographic characterization, antituberculosis and cytotoxic activity studies. New Journal of Chemistry 2019; 43: 6856-6873.
  • 17. Xu M-J, Xu G-R, Leng Y, Li B. Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins. Polymer Degradation and Stability 2016; 123: 105-114.
  • 18. Barbera J, Bardaj M, Jimnez J, Laguna A, Martnez J et al. Columnar mesomorphic organizations in cyclotriphosphazenes. Journal of American Chemical Society 2005; 127: 8994-9002.
  • 19. Jiménez J, Pintre I, Gascón E, Sánchez-Somolinos C, Alcalá R et al. Photoresponsive liquid-crystalline dendrimers based on a cyclotriphosphazene core. Macromolecular Chemistry and Physics 2014; 215: 1551-1562.
  • 20. Elmas G, Okumuş A, Kılıç Z, Çelik SP, Açık L. The spectroscopic and thermal properties, antibacterial and antifungal activity and DNA interactions of 4-(fluorobenzyl)spiro(N/O)cyclotriphosphazenium salts. Journal of the Turkish Chemical Society, Section A: Chemistry 2017; 4: 993-1016.
  • 21. Yıldırım K, Bilgin G, Yenilmez Çiftçi E, Tanrıverdi Eçik E, Şenkuytu Y et al. Synthesis, cytotoxicity and apoptosis of cyclotriphosphazene compounds as anti-cancer agents. European Journal of Medicinal Chemistry 2012; 52: 213- 220.
  • 22. Çetindere S, Tümay SO, Kılıç A, Durmuş M, Yeşilot S. Hexa-BODIPY linked-triazole based on a cyclotriphosphazene core as a highly selective and sensitive fluorescent sensor for Fe(2+) ions. Journal of Fluorescence 2016; 26: 1173-1181.
  • 23. Sazhin SV, Harrup MK, Gering KLJ. Characterization of low-flammability electrolytes for lithium-ion batteries. Journal of Power Sources 2011; 196: 3433-3438.
  • 24. Dagger T, Luerenbaum C, Schappacher FM, Winter M. Electrochemical performance evaluations and safety investigations of pentafluoro(phenoxy)cyclotriphosphazene as a flame retardant electrolyte additive for application in lithium ion battery systems using a newly designed apparatus for improved self-extinguishing time measurements. Journal of Power Sources 2017; 342: 266-272.
  • 25. Nishimoto T, Yasuda T, Lee SY, Kondo R, Adachi C. A six-carbazole-decorated cyclophosphazene as a host with high triplet energy to realize efficient delayed-fluorescence OLEDs. Materials Horizons 2014; 1: 264-269.
  • 26. Barlow S, Marder S.R. Electronic and optical properties of conjugated group 8 metallocene derivatives. Chemical Communications 2000; 1555-1562.
  • 27. Barlow S, Bunting HE, Ringham C, Green JC, Bublitz GU et al. Studies of the electronic structure of metallocenebased second-order nonlinear optical dyes. Journal of the American Chemical Society 1999; 121: 3715-3723.
  • 28. Elmas G, Okumuş A, Koç LY, Soltanzade H, Kılıç Z et al. Phosphorus-nitrogen compounds. Part 29. Syntheses, crystal structures, spectroscopic and stereogenic properties, electrochemical investigations, antituberculosis, antimicrobial and cytotoxic activities and DNA interactions of ansa-spiro-ansa cyclotetraphosphazenes. European Journal of Medicinal Chemistry 2014; 87: 662-676.
  • 29. Chandrasekhar V, Andavan GTS, Nagendran S, Krishnan V, Azhakar R et al. Cyclophosphazene hydrazides as scaffolds for multi-ferrocenyl assemblies: synthesis, structure and electrochemistry. Organometallics 2003; 22: 976-986.
  • 30. Sengupta SA. Hexaferrocenyl cluster based on a cyclotriphosphazene core: synthesis and electrochemistry. Polyhedron 2003; 22: 1237-1240.
  • 31. Tümer Y, Koç LY, Asmafiliz N, Kılıç Z, Hökelek T et al. Phosphorus-nitrogen compounds: Part 30. Syntheses and structural investigations, antimicrobial and cytotoxic activities and DNA interactions of vanillinato-substituted NN or NO spirocyclic monoferrocenyl cyclotriphosphazenes. Journal of Biological Inorganic Chemistry 2015; 20: 165-178.
  • 32. İlter EE, Asmafiliz N, Kılıç Z, Açık L, Yavuz M et al. Phosphorus-nitrogen compounds: Part 19. Syntheses, structural and electrochemical investigations, biological activities, and DNA interactions of new spirocyclic monoferrocenylcyclotriphosphazenes. Polyhedron 2010; 29: 2933-2944.
  • 33. Asmafiliz N, Kılıç Z, Öztürk A, Hökelek T, Koç LY et al. Phosphorus-nitrogen compounds. 18. Syntheses, stereogenic properties, structural and electrochemical investigations, biological activities, and DNA interactions of new spirocyclic mono- and bisferrocenylphosphazene derivatives. Inorganic Chemistry 2009; 48: 10102-10116.
  • 34. Okumuş A, Elmas G, Cemaloğlu R, Aydın B, Binici A et al. Phosphorus-nitrogen compounds. Part 35. Syntheses, spectroscopic and electrochemical properties, and antituberculosis, antimicrobial and cytotoxic activities of monoferrocenyl-spirocyclotetraphosphazenes. New Journal of Chemistry 2016; 40: 5588-5603.
  • 35. Asmafiliz N, Kılıç Z, Hökelek T, Koç LY, Açık L et al. Phosphorus-nitrogen compounds: Part 26. Syntheses, spectroscopic and structural investigations, biological and cytotoxic activities, and DNA interactions of mono and bisferrocenylspirocyclotriphosphazenes. Inorganica Chimica Acta 2013; 400: 250-261.
  • 36. Tümer Y, Asmafiliz N, Zeyrek CT, Kılıç Z, Açık L et al. Syntheses, spectroscopic and crystallographic characterizations of cis- and trans-dispirocyclic ferrocenylphosphazenes: molecular dockings, cytotoxic and antimicrobial activities. New Journal of Chemistry 2018; 42: 1740-1756.
  • 37. Tümer Y, Asmafiliz N, Kılıç Z, Hökelek T, Koç LY et al. Phosphorus-nitrogen compounds: Part 28. Syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing vanillinato and pendant ferrocenyl groups. Journal of Molecular Structure 2013; 1049: 112-124.
  • 38. Elmas G, Okumuş A, Cemaloğlu R, Kılıç Z, Çelik SP et al. Phosphorus-nitrogen compounds. Part 38. Syntheses, characterizations, cytotoxic, antituberculosis and antimicrobial activities and DNA interactions of spirocyclotetraphosphazenes with bis-ferrocenyl pendant arms. Journal of Organometallic Chemistry 2017; 853: 93-106.
  • 39. Tümer Y, Asmafiliz N, Arslan G, Kılıç Z, Hökelek T. Phosphorus-nitrogen compounds: Part 45. Vanillinatosubstituted cis and trans-bisferrocenyldispirocyclotriphosphazenes: Syntheses, spectroscopic and crystallographic characterizations. Journal of Molecular Structure 2019; 1181: 235-243.
  • 40. Asmafiliz N, Civan M, Özben A, Kılıç Z, Ramazanoğlu N et al. Phosphorus-nitrogen compounds. Part 39. Syntheses and Langmuir-Blodgett thin films and antimicrobial activities of N/N and N/O spirocyclotriphosphazenes with monoferrocenyl pendant arm. Applied Organometallic Chemistry 2018; 32(4): e4223.
  • 41. Asmafiliz N, Civan M, Uzunalioğlu N, Özben A, Kılıç Z et al. Phosphorus–nitrogen compounds. Part 41. Ferrocenyl pendant-armed spirocyclopiperidinocyclotriphosphazatrienes: Langmuir–Blodgett thin films and biological activity studies. Journal of Chemical Sciences 2018; 130: 152.
  • 42. Shaw RA. The Phosphazenes-Structural parameters and their relationships to physical and chemical properties. Phosphorus, Sulfur, and Silicon and the Related Elements 1986; 28: 99-128.
  • 43. Pektaş S, Bilge Koçak S, Başterzi NS, Kılıç Z, Zeyrek CT et al. spiro-Cylotriphosphazenes containing 4-hydroxypheny lethyl pendant arm: Syntheses, structural characterization and DNA interaction study. Inorganica Chimica Acta 2018; 474: 51-65.
  • 44. Bilge Koçak S, Koçoğlu S, Okumuş A, Kılıç Z, Öztürk A et al. Syntheses, spectroscopic properties, crystal structures, biological activities, and DNA interactions of heterocyclic amine substituted spiro-ansa-spiro- and spiro-bino-spiro-phosphazenes. Inorganica Chimica Acta 2013; 406: 160-170.
  • 45. Bilge S, Demiriz Ş, Okumuş A, Kılıç Z, Tercan B et al. Phosphorus-nitrogen compounds: Part 13. Syntheses, crystal structures, spectroscopic, stereogenic and anisochronic properties of novel spiro-ansa-spiro-, spiro-bino-spiro- and spiro-crypta phosphazene derivatives. Inorganic Chemistry 2006; 45: 8755-8767.
  • 46. İlter EE, Asmafiliz N, Işıklan M, Kılıç Z, Çaylak N et al. Phosphorus-nitrogen compounds: Part 14. Synthesis, stereogenism and structural investigations of novel N/O spirocyclic phosphazene derivatives. Inorganic Chemistry 2007; 46: 9931-9944.
  • 47. Okumuş A, Bilge S, Kılıç Z, Öztürk A, Hökelek T et al. Phosphorus-nitrogen compounds. Part 20: Fully substituted spiro-cyclophosphazenic lariat (PNP-pivot) ether derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2010; 76; 401-409.
  • 48. Bilge S, Özgüç B, Safran S, Demiriz Ş, İşler H et al. Phosphorus-nitrogen compounds: Novel fully substituted spiro-cyclophosphazenic lariat (PNP-pivot) ether derivatives. Structures of 4,4,6,6-tetrapyrrolidino-2,2-[3-oxa-1,5- pentane dioxy bis(2-phenylamino)cyclo-2λ 5 ,4λ 5 ,6λ 5 -triphosphazene and 4,4,6,6-tetrapyrrolidino-2,2-[1,2-xylylene dioxy bis(2-phenylamino)cyclo[2λ 5 ,4λ 5 ,6λ 5 ]-triphosphazene. Part XI. Journal of Molecular Structure 2005; 748: 101-109.
  • 49. Kılıç Z, Okumuş A, Demiriz Ş, Bilge S, Öztürk A et al. Phosphorus-nitrogen compounds: Part 16. Synthesis, stereogenism, anisochronism and the relationship between 31P NMR spectral and crystallographic data of monotopic spiro-crypta phosphazene derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2009; 65: 269-286.
  • 50. Asmafiliz N, İlter EE, Işıklan M, Kılıç Z, Tercan B et al. Novel phosphazene derivetives. Synthesis, anisochronism and structural investigations of mono- and ditopic spiro-crypta phosphazenes. Journal of Molecular Structure 2007; 832: 172-183.
  • 51. Asmafiliz N, İlter EE, Kılıç Z, Hökelek T, Şahin E. Phosphorus-nitrogen compounds: Part 15. Synthesis, anisochronism and the relationship between crystallographic and spectral data of monotopic spiro-crypta phosphazenes. Journal of Chemical Sciences 2008; 120: 363-376.
  • 52. Asmafiliz N, Kılıç Z, Öztürk A, Süzen Y, Hökelek T et al. Phosphorus-nitrogen compounds: Part 25. Syntheses, spectroscopic, structural and electrochemical investigations, antimicrobial activities, and DNA interactions of ferrocenyldiaminocyclotriphosphazenes. Phosphorus, Sulfur, and Silicon and the Related Elements 2013; 188: 1723- 1742.
  • 53. Schuhmann W, Ohara TJ, Schmidt H-L, Heller A. Electron transfer between glucose oxidase and electrodes via redox mediators bound with flexible chains to the enzyme surface. Journal of the American Chemical Society 1991; 113: 1394-1397.
  • 54. Neuse EW, Meirim MG, Blom NF. Metallocene-containing platinum complexes as potential antitumor agents. 1. Dichloro(1,6-diferrocenyl-2,5-diazahexane)platinum(11) and c/s-dichlorobis(1-ferrocenylethylamine)platinum(II). Organometallics 1988; 7: 2562-2565.
  • 55. Bullen GJ. An improved determination of the crystal structure of hexachlorocyclotriphosphazene (phosphonitrilic chloride). Journal of the Chemical Society A: Inorganic, Physical, Theoretical 1971; 56: 1450-1453.
  • 56. Çil E, Arslan M, Görgülü AO. Synthesis and characterization of alkyl- and acyl-substituted oxime-phosphazenes. Canadian Journal of Chemistry 2005; 83: 2039-2045.
  • 57. Wagner AJ, Vos A. The crystal structure of compounds with (N–P) n rings. IV. The stable modification (T form) of tetrameric phosphonitrilic chloride, N4P4 Cl 8 . Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 1968; 24: 707-713.
  • 58. İbişoğlu H, Çiftçi Yenilmez G, Kılıç A, Tanrıverdi E, Ün İ et al. Formation of novel spiro, spiroansa and dispiroansa derivatives of cyclotetraphosphazene from the reactions of polyfunctional amines with octachlorocyclotetraphosphazatetraene. Journal of Chemical Sciences 2009; 121: 125-135.
  • 59. Chaplin AB, Harrison JA, Dyson PJ. Revisiting the electronic structure of phosphazenes. Inorganic Chemistry 2005; 44: 8407-8417.